授課內容

深度學習理論與實務
醫學系 大學部一下/公共衛生研究所 碩士班一下/生命科學研究所 博士班一下
111學年度下學期
每週四上午 09:00-12:00 語言教室1

第三次人工智能爆發在演算法上主要是深度學習技術的突破,本課程將從梯度下降法開始講述深度學習的原理,並且透過R語言從頭開始實現幾個基礎的模型架構,並在理論基礎完備後帶領同學使用MxNet框架進行快速的深度學習模型開發,並且實際重複幾個經典的網路研究,並在最終將深度學習模型擴展至圖像分類以外的任務,像是物件識別、自然語言處理以及圖像生成等。本節課的教學目標在於希望學生在未來能利用框架進行快速的網路開發,並有能力做出各式相關實驗已精進自己的演算法。

                                                                                                                                                                                                       
  進度    授課主題與內容    課程講義    教學錄影  
1深度神經網路介紹Lesson 1敬請期待
2局部極值與優化技術Lesson 2敬請期待
3過度擬合的解決方案Lesson 3敬請期待
4MxNet框架編程介紹Lesson 4敬請期待
5解決梯度消失問題Lesson 5敬請期待
6卷積神經網路與轉移特徵學習Lesson 6敬請期待
7現代網路設計與邏輯可視化Lesson 7敬請期待
8反卷積層與自編碼器Lesson 8敬請期待
9變分自編碼器與異常檢測Lesson 9敬請期待
10對抗生成網路概述Lesson 10敬請期待
11對抗生成網路進階應用Lesson 11敬請期待
12物體分割與物件識別模型概述Lesson 12敬請期待
13物件識別模型實驗Lesson 13敬請期待
14詞嵌入模型與其深度學習應用Lesson 14敬請期待
15循環神經網絡介紹與注意力機制的應用Lesson 15敬請期待