深度學習理論與實務

林嶔 (Lin, Chin)

Lesson 8 反卷積層與自編碼器

第一節:自編碼器(1)

– 但目前為止它能夠應用的場景仍然太少了,我們開始教大家相關的技術能夠運用到哪些地方

– 自編碼器是一種數據的壓縮算法,其中數據的壓縮和解壓縮函數是數據相關的、有損的、從樣本中自動學習的。

F01

第一節:自編碼器(2)

– 請在這裡下載MNIST的手寫數字資料

library(data.table)

DAT = fread("data/MNIST.csv", data.table = FALSE)
DAT = data.matrix(DAT)

#Split data

set.seed(0)
Train.sample = sample(1:nrow(DAT), nrow(DAT)*0.6, replace = FALSE)

Train.X = DAT[Train.sample,-1]
Train.Y = DAT[Train.sample,1]
Test.X = DAT[-Train.sample,-1]
Test.Y = DAT[-Train.sample,1]

#Display

library(OpenImageR)

imageShow(t(matrix(as.numeric(Train.X[1,]), nrow = 28, byrow = TRUE)))

fwrite(x = data.table(cbind(Train.Y, Train.X)),
       file = 'data/train_data.csv',
       col.names = FALSE, row.names = FALSE)

fwrite(x = data.table(cbind(Test.Y, Test.X)),
       file = 'data/test_data.csv',
       col.names = FALSE, row.names = FALSE)

第一節:自編碼器(3)

library(mxnet)

my_iterator_func <- setRefClass("Custom_Iter1",
                                fields = c("iter", "data.csv", "data.shape", "batch.size"),
                                contains = "Rcpp_MXArrayDataIter",
                                methods = list(
                                  initialize = function(iter, data.csv, data.shape, batch.size){
                                    csv_iter <- mx.io.CSVIter(data.csv = data.csv, data.shape = data.shape, batch.size = batch.size)
                                    .self$iter <- csv_iter
                                    .self
                                  },
                                  value = function(){
                                    val <- as.array(.self$iter$value()$data)
                                    val.x <- val[-1,]
                                    dim(val.x) <- c(28, 28, 1, ncol(val.x))
                                    val.x <- val.x/255
                                    val.x <- mx.nd.array(val.x)
                                    val.y <- val.x
                                    list(data=val.x, label=val.y)
                                  },
                                  iter.next = function(){
                                    .self$iter$iter.next()
                                  },
                                  reset = function(){
                                    .self$iter$reset()
                                  },
                                  finalize=function(){
                                  }
                                )
)

my_iter1 = my_iterator_func(iter = NULL,  data.csv = 'data/train_data.csv', data.shape = 785, batch.size = 20)

– 我們再看一次這個Iterator怎樣使用:

my_iter1$reset()
my_iter1$iter.next()
## [1] TRUE
my_value = my_iter1$value()

library(OpenImageR)

imageShow(t(matrix(as.numeric(as.array(my_value$data)[,,,1]), nrow = 28, byrow = TRUE)))

第一節:自編碼器(4)

– 需要特別注意的是,為了確保我們的Encoder是具有壓縮的感覺,每一層的數值總數都必須小於前一層!

# Encoder

data <- mx.symbol.Variable('data')

fc1 <- mx.symbol.FullyConnected(data = data, num.hidden = 128, name = 'fc1')
relu1 <- mx.symbol.Activation(data = fc1, act_type = "relu", name = 'relu1')

encoder <- mx.symbol.FullyConnected(data = relu1, num.hidden = 32, name = 'encoder')

# Decoder

fc3 <- mx.symbol.FullyConnected(data = encoder, num.hidden = 128, name = 'fc3')
relu3 <- mx.symbol.Activation(data = fc3, act_type = "relu", name = 'relu3')

fc4 <- mx.symbol.FullyConnected(data = relu3, num.hidden = 784, name = 'fc4')

decoder <- mx.symbol.reshape(data = fc4, shape = c(28, 28, 1, -1), name = 'decoder')

# MSE loss

label <- mx.symbol.Variable(name = 'label')

residual <- mx.symbol.broadcast_minus(lhs = label, rhs = decoder) 
square_residual <- mx.symbol.square(data = residual)
mean_square_residual <- mx.symbol.mean(data = square_residual, axis = 0:3, keepdims = FALSE)
mse_loss <- mx.symbol.MakeLoss(data = mean_square_residual, name = 'mse')

第一節:自編碼器(5)

my_optimizer <- mx.opt.create(name = "adam", learning.rate = 0.001, beta1 = 0.9, beta2 = 0.999, wd = 1e-4)
my.eval.metric.loss <- mx.metric.custom(
  name = "mlog-loss", 
  function(real, pred) {
    return(as.array(pred))
  }
)

mx.set.seed(0)

model <- mx.model.FeedForward.create(symbol = mse_loss, X = my_iter1, optimizer = my_optimizer,
                                     eval.metric = my.eval.metric.loss,
                                     array.batch.size = 20, ctx = mx.gpu(), num.round = 20)

第一節:自編碼器(6)

model$symbol <- decoder

Test.DAT = fread("data/test_data.csv", data.table = FALSE)

Test.X = t(Test.DAT[,-1])
dim(Test.X) = c(28, 28, 1, ncol(Test.X))
Test.X = Test.X/255
Test.Y = Test.DAT[,1]

unzip_pred <- predict(model, Test.X)
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0

library(imager)

par(mar=rep(0,4), mfcol = c(4, 5))

for (i in 1:10) {
  
  plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
  rasterImage((Test.X[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
  
  plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
  rasterImage((unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
  
}

練習1:試著把壓縮模型與解壓縮模型分離開來

– 除此之外,你也能嘗試看看隨便給一串32個數字,測試一下解壓縮模型能幫你解碼成什麼東西!

練習1答案(1)

– 想要分離壓縮模型並不困難,需要用到我們之前做轉移特徵學習類似的方式:

all_layers <- model$symbol$get.internals()
encoder_output <- which(all_layers$outputs == 'encoder_output') %>% all_layers$get.output()

encoder_model <- model
encoder_model$symbol <- encoder_output
encoder_model$arg.params <- encoder_model$arg.params[names(encoder_model$arg.params) %in% names(mx.symbol.infer.shape(encoder_output, data = c(28, 28, 1, 7))$arg.shapes)]
encoder_model$aux.params <- encoder_model$aux.params[names(encoder_model$aux.params) %in% names(mx.symbol.infer.shape(encoder_output, data = c(28, 28, 1, 7))$aux.shapes)]
zip_code <- predict(encoder_model, Test.X)
dim(zip_code)
## [1]    32 16800

練習1答案(2)

# Decoder

data <- mx.symbol.Variable('data')

fc3 <- mx.symbol.FullyConnected(data = data, num.hidden = 128, name = 'fc3')
relu3 <- mx.symbol.Activation(data = fc3, act_type = "relu", name = 'relu3')

fc4 <- mx.symbol.FullyConnected(data = relu3, num.hidden = 784, name = 'fc4')

decoder_output <- mx.symbol.reshape(data = fc4, shape = c(28, 28, 1, -1), name = 'decoder')
decoder_model <- model
decoder_model$symbol <- decoder_output
decoder_model$arg.params <- decoder_model$arg.params[names(decoder_model$arg.params) %in% names(mx.symbol.infer.shape(decoder_output, data = c(32, 7))$arg.shapes)]
decoder_model$aux.params <- decoder_model$aux.params[names(decoder_model$aux.params) %in% names(mx.symbol.infer.shape(decoder_output, data = c(32, 7))$aux.shapes)]
unzip_pred <- predict(decoder_model, zip_code, array.layout = 'colmajor')
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0

library(imager)

par(mar=rep(0,4), mfcol = c(4, 5))

for (i in 1:20) {
  plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
  rasterImage((unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
}

練習1引申討論(1)

randon_zip_code <- array(rnorm(320, sd = 3), dim = c(32, 10))

unzip_pred <- predict(decoder_model, randon_zip_code)
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0

library(imager)

par(mar=rep(0,4), mfcol = c(2, 5))

for (i in 1:10) {
  plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
  rasterImage(t(unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
}

練習1引申討論(2)

test_array <- Test.X

test_array <- test_array + rnorm(prod(dim(test_array)), sd = 0.3)
test_array[test_array > 1] <- 1
test_array[test_array < 0] <- 0

unzip_pred <- predict(model, test_array)
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0

library(imager)

par(mar=rep(0,4), mfcol = c(4, 5))

for (i in 1:10) {
  
  plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
  rasterImage((test_array[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
  
  plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
  rasterImage((unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
  
}

第二節:反卷積層(1)

– 在今天之前,我們所有使用到的卷積層都只能把特徵圖縮小(下採樣,down sampling),這在對於圖像分類並不會有太大的問題,但對於其他任務來說操作就比較受限了。

F02

第二節:反卷積層(2)

X <- array(1:9, dim = c(3, 3, 1))
Filter <- array(c(-1, 0, 0, 1), dim = c(2, 2, 1, 1))

– 這是當步輻為1的狀況下:

Filter_size <- dim(Filter)[1]
Stride <- 1
out <- array(0, dim = c(4, 4, 1))

for (l in 1:dim(X)[3]) {
  for (k in 1:dim(Filter)[3]) {
    for (j in 1:dim(X)[2]) {
      for (i in 1:dim(X)[1]) {
        row_seq <- ((i-1) * Stride + 1):((i-1) * Stride + Filter_size)
        col_seq <- ((j-1) * Stride + 1):((j-1) * Stride + Filter_size)
        out[row_seq,col_seq,k] <- out[row_seq,col_seq,k] + X[i,j,l] * Filter[,,k,l]
      }
    }
  }
}

out
## , , 1
## 
##      [,1] [,2] [,3] [,4]
## [1,]   -1   -4   -7    0
## [2,]   -2   -4   -4    7
## [3,]   -3   -4   -4    8
## [4,]    0    3    6    9

– 這是當步輻為2的狀況下:

Filter_size <- dim(Filter)[1]
Stride <- 2
out <- array(0, dim = c(6, 6, 1))

for (l in 1:dim(X)[3]) {
  for (k in 1:dim(Filter)[3]) {
    for (j in 1:dim(X)[2]) {
      for (i in 1:dim(X)[1]) {
        row_seq <- ((i-1) * Stride + 1):((i-1) * Stride + Filter_size)
        col_seq <- ((j-1) * Stride + 1):((j-1) * Stride + Filter_size)
        out[row_seq,col_seq,k] <- out[row_seq,col_seq,k] + X[i,j,l] * Filter[,,k,l]
      }
    }
  }
}

out
## , , 1
## 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]   -1    0   -4    0   -7    0
## [2,]    0    1    0    4    0    7
## [3,]   -2    0   -5    0   -8    0
## [4,]    0    2    0    5    0    8
## [5,]   -3    0   -6    0   -9    0
## [6,]    0    3    0    6    0    9

第二節:反卷積層(3)

X <- array(1:18, dim = c(3, 3, 2))
Filter <- array(c(-1, 0, 0, 1, 0, 1, -1, 0), dim = c(2, 2, 1, 2))

– 這是當步輻為1的狀況下:

Filter_size <- dim(Filter)[1]
Stride <- 1
out <- array(0, dim = c(4, 4, 1))

for (l in 1:dim(X)[3]) {
  for (k in 1:dim(Filter)[3]) {
    for (j in 1:dim(X)[2]) {
      for (i in 1:dim(X)[1]) {
        row_seq <- ((i-1) * Stride + 1):((i-1) * Stride + Filter_size)
        col_seq <- ((j-1) * Stride + 1):((j-1) * Stride + Filter_size)
        out[row_seq,col_seq,k] <- out[row_seq,col_seq,k] + X[i,j,l] * Filter[,,k,l]
      }
    }
  }
}

out
## , , 1
## 
##      [,1] [,2] [,3] [,4]
## [1,]   -1  -14  -20  -16
## [2,]    8   -2   -2  -10
## [3,]    8   -2   -2  -10
## [4,]   12   18   24    9

– 這是當步輻為2的狀況下:

Filter_size <- dim(Filter)[1]
Stride <- 2
out <- array(0, dim = c(6, 6, 1))

for (l in 1:dim(X)[3]) {
  for (k in 1:dim(Filter)[3]) {
    for (j in 1:dim(X)[2]) {
      for (i in 1:dim(X)[1]) {
        row_seq <- ((i-1) * Stride + 1):((i-1) * Stride + Filter_size)
        col_seq <- ((j-1) * Stride + 1):((j-1) * Stride + Filter_size)
        out[row_seq,col_seq,k] <- out[row_seq,col_seq,k] + X[i,j,l] * Filter[,,k,l]
      }
    }
  }
}

out
## , , 1
## 
##      [,1] [,2] [,3] [,4] [,5] [,6]
## [1,]   -1  -10   -4  -13   -7  -16
## [2,]   10    1   13    4   16    7
## [3,]   -2  -11   -5  -14   -8  -17
## [4,]   11    2   14    5   17    8
## [5,]   -3  -12   -6  -15   -9  -18
## [6,]   12    3   15    6   18    9

第三節:利用卷積與反卷積做出自編碼器(1)

# Encoder

data <- mx.symbol.Variable('data')

conv1 <- mx.symbol.Convolution(data = data, kernel = c(7, 7), stride = c(7, 7), num_filter = 8, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')

conv2 <- mx.symbol.Convolution(data = relu1, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')

encoder <- mx.symbol.Convolution(data = relu2, kernel = c(2, 2), stride = c(2, 2), num_filter = 32, name = 'encoder')

# Decoder

deconv3 <- mx.symbol.Deconvolution(data = encoder, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'deconv3')
relu3 <- mx.symbol.Activation(data = deconv3, act_type = "relu", name = 'relu3')

deconv4 <- mx.symbol.Deconvolution(data = relu3, kernel = c(2, 2), stride = c(2, 2), num_filter = 8, name = 'deconv4')
relu4 <- mx.symbol.Activation(data = deconv4, act_type = "relu", name = 'relu4')

decoder <- mx.symbol.Deconvolution(data = relu4, kernel = c(7, 7), stride = c(7, 7), num_filter = 1, name = 'decoder')

# MSE loss

label <- mx.symbol.Variable(name = 'label')

residual <- mx.symbol.broadcast_minus(lhs = label, rhs = decoder) 
square_residual <- mx.symbol.square(data = residual)
mean_square_residual <- mx.symbol.mean(data = square_residual, axis = 0:3, keepdims = FALSE)
mse_loss <- mx.symbol.MakeLoss(data = mean_square_residual, name = 'mse')
model <- mx.model.FeedForward.create(symbol = mse_loss, X = my_iter1, optimizer = my_optimizer,
                                     eval.metric = my.eval.metric.loss,
                                     array.batch.size = 20, ctx = mx.gpu(), num.round = 20)

第三節:利用卷積與反卷積做出自編碼器(2)

model$symbol <- decoder

unzip_pred <- predict(model, Test.X)
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0

library(imager)

par(mar=rep(0,4), mfcol = c(4, 5))

for (i in 1:10) {
  
  plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
  rasterImage((Test.X[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
  
  plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
  rasterImage((unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
  
}

練習2:學習不使用MxNet進行反卷積操作

– 這是壓縮模型:

all_layers <- model$symbol$get.internals()
encoder_output <- which(all_layers$outputs == 'encoder_output') %>% all_layers$get.output()

encoder_model <- model
encoder_model$symbol <- encoder_output
encoder_model$arg.params <- encoder_model$arg.params[names(encoder_model$arg.params) %in% names(mx.symbol.infer.shape(encoder_output, data = c(28, 28, 1, 7))$arg.shapes)]
encoder_model$aux.params <- encoder_model$aux.params[names(encoder_model$aux.params) %in% names(mx.symbol.infer.shape(encoder_output, data = c(28, 28, 1, 7))$aux.shapes)]

– 這是解壓縮模型:

data <- mx.symbol.Variable('data')

deconv3 <- mx.symbol.Deconvolution(data = data, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'deconv3')
relu3 <- mx.symbol.Activation(data = deconv3, act_type = "relu", name = 'relu3')

deconv4 <- mx.symbol.Deconvolution(data = relu3, kernel = c(2, 2), stride = c(2, 2), num_filter = 8, name = 'deconv4')
relu4 <- mx.symbol.Activation(data = deconv4, act_type = "relu", name = 'relu4')

decoder_output <- mx.symbol.Deconvolution(data = relu4, kernel = c(7, 7), stride = c(7, 7), num_filter = 1, name = 'decoder')

decoder_model <- model
decoder_model$symbol <- decoder_output
decoder_model$arg.params <- decoder_model$arg.params[names(decoder_model$arg.params) %in% names(mx.symbol.infer.shape(decoder_output, data = c(1, 1, 32, 1))$arg.shapes)]
decoder_model$aux.params <- decoder_model$aux.params[names(decoder_model$aux.params) %in% names(mx.symbol.infer.shape(decoder_output, data = c(1, 1, 32, 1))$aux.shapes)]
img_input <- Test.X[,,,1]
dim(img_input) <- c(28, 28, 1, 1)

Input <- predict(encoder_model, img_input)
dim(Input)
## [1]  1  1 32  1
Output <- predict(decoder_model, Input)
dim(Output)
## [1] 28 28  1  1

練習2答案

DECONV_func <- function (X, WEIGHT, STRIDE) {
  
  original_size <- dim(X)[1]
  out <- array(0, dim = c(original_size * STRIDE, original_size * STRIDE, dim(WEIGHT)[3], dim(X)[4]))
  
  for (m in 1:dim(X)[4]) {
    for (l in 1:dim(X)[3]) {
      for (k in 1:dim(WEIGHT)[3]) {
        for (j in 1:dim(X)[2]) {
          for (i in 1:dim(X)[1]) {
            row_seq <- ((i-1) * STRIDE + 1):((i-1) * STRIDE + STRIDE)
            col_seq <- ((j-1) * STRIDE + 1):((j-1) * STRIDE + STRIDE)
            out[row_seq,col_seq,k,m] <- out[row_seq,col_seq,k,m] + X[i,j,l,m] * WEIGHT[,,k,l]
          }
        }
      }
    }
  }
  
  return(out)
  
}

deconv3_out <- DECONV_func(X = Input, WEIGHT = as.array(decoder_model$arg.params$deconv3_weight), STRIDE = 2)
relu3_out <- deconv3_out
relu3_out[relu3_out < 0] <- 0

deconv4_out <- DECONV_func(X = relu3_out, WEIGHT = as.array(decoder_model$arg.params$deconv4_weight), STRIDE = 2)
relu4_out <- deconv4_out
relu4_out[relu4_out < 0] <- 0

My_Output <- DECONV_func(X = relu4_out, WEIGHT = as.array(decoder_model$arg.params$decoder_weight), STRIDE = 7)
library(imager)

par(mar=rep(0,4), mfcol = c(1, 2))

plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
Output[Output > 1] <- 1
Output[Output < 0] <- 0
rasterImage((Output[,,,1]), 0, 0, 1, 1, interpolate = FALSE)

plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
My_Output[My_Output > 1] <- 1
My_Output[My_Output < 0] <- 0
rasterImage((My_Output[,,,1]), 0, 0, 1, 1, interpolate = FALSE)

第四節:自編碼器的進階運用(1)

– 另外我們也了解到,透過這種方式訓練的「Encoder」,它確實能把數據做「壓縮/降維」,並且這些「降維」後的數據是有辦法還原成原始圖像的,這也說明了雖然我們看不懂「Encoder」的輸出,但它肯定存在某種意義

– 下圖是我們試圖了解不同數字經過「Encoder」編碼過後的向量在空間中的相對位置,我們發現不同數字存在群聚關係(為了將數據從32維打到2維空間,我們這裡使用了PCA降維技術):

zip_code <- predict(encoder_model, Test.X)
dim(zip_code) <- dim(zip_code)[3:4]
zip_code <- t(zip_code)

PCA_result <- princomp(zip_code, cor = TRUE)

plot(PCA_result$scores[,1], PCA_result$scores[,2],
     xlab = 'Comp.1', ylab = 'Comp.2',
     pch = 19, cex = 0.5, col = rainbow(10)[Test.Y + 1])

legend('topright', legend = 0:9, pch = 19, col = rainbow(10))

第四節:自編碼器的進階運用(2)

sub_Train.DAT <- data.table(cbind(Train.Y, Train.X))[1:500,]

fwrite(x = sub_Train.DAT,
       file = 'data/sub_train_data.csv',
       col.names = FALSE, row.names = FALSE)
my_iterator_func2 <- setRefClass("Custom_Iter2",
                                fields = c("iter", "data.csv", "data.shape", "batch.size"),
                                contains = "Rcpp_MXArrayDataIter",
                                methods = list(
                                  initialize = function(iter, data.csv, data.shape, batch.size){
                                    csv_iter <- mx.io.CSVIter(data.csv = data.csv, data.shape = data.shape, batch.size = batch.size)
                                    .self$iter <- csv_iter
                                    .self
                                  },
                                  value = function(){
                                    val <- as.array(.self$iter$value()$data)
                                    val.x <- val[-1,]
                                    dim(val.x) <- c(28, 28, 1, ncol(val.x))
                                    val.x <- val.x/255
                                    val.x <- mx.nd.array(val.x)
                                    val.y <- t(model.matrix(~ -1 + factor(val[1,], levels = 0:9)))
                                    val.y <- array(val.y, dim = c(10, dim(val.x)[4]))
                                    val.y <- mx.nd.array(val.y)
                                    list(data=val.x, label=val.y)
                                  },
                                  iter.next = function(){
                                    .self$iter$iter.next()
                                  },
                                  reset = function(){
                                    .self$iter$reset()
                                  },
                                  finalize=function(){
                                  }
                                )
)

my_iter2 = my_iterator_func2(iter = NULL,  data.csv = 'data/sub_train_data.csv', data.shape = 785, batch.size = 20)

第四節:自編碼器的進階運用(3)

data <- mx.symbol.Variable('data')

conv1 <- mx.symbol.Convolution(data = data, kernel = c(7, 7), stride = c(7, 7), num_filter = 8, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')

conv2 <- mx.symbol.Convolution(data = relu1, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')

conv3 <- mx.symbol.Convolution(data = relu2, kernel = c(2, 2), stride = c(2, 2), num_filter = 32, name = 'conv3')

fc1 <- mx.symbol.FullyConnected(data = conv3, num.hidden = 10, name = 'fc1')
softmax <- mx.symbol.softmax(data = fc1, axis = 1, name = 'softmax')

label <- mx.symbol.Variable(name = 'label')

eps <- 1e-8
m_log <- 0 - mx.symbol.mean(mx.symbol.broadcast_mul(mx.symbol.log(softmax + eps), label))
m_logloss <- mx.symbol.MakeLoss(m_log, name = 'm_logloss')
my_optimizer <- mx.opt.create(name = "adam", learning.rate = 0.001, beta1 = 0.9, beta2 = 0.999, wd = 1e-4)
my.eval.metric.loss <- mx.metric.custom(
  name = "mlog-loss", 
  function(real, pred) {
    return(as.array(pred))
  }
)

mx.set.seed(0)

model.1 <- mx.model.FeedForward.create(symbol = m_logloss, X = my_iter2, optimizer = my_optimizer,
                                       eval.metric = my.eval.metric.loss,
                                       array.batch.size = 20, ctx = mx.gpu(), num.round = 100)

第四節:自編碼器的進階運用(4)

model.1$symbol <- softmax

predict_Y <- predict(model.1, Test.X)
confusion_table <- table(max.col(t(predict_Y)), Test.Y)
cat("Testing accuracy rate =", sum(diag(confusion_table))/sum(confusion_table))
## Testing accuracy rate = 0.7714881
print(confusion_table)
##     Test.Y
##         0    1    2    3    4    5    6    7    8    9
##   1  1439    4   23   46    3   76   62   22   21    7
##   2     1 1666   17    6    7   14    3   20   29    4
##   3    12   18 1255  154   21   33  109   43   51    2
##   4    27    3   63 1315    2  120    2  100   44   26
##   5     1    1   27    0 1050   25   83    7   12   99
##   6   141    2   15  113   62  937   35   10  107   45
##   7    34    0  114    3   47   33 1315    1    8    3
##   8     0   59    9   38   17   21    1 1409    6  123
##   9     3   67  106   46   79  232   40   14 1306   64
##   10    5   31   27   21  318   60   11  127   91 1269

第四節:自編碼器的進階運用(5)

mx.set.seed(0)
new_arg <- mxnet:::mx.model.init.params(symbol = m_logloss,
                                        input.shape = list(data = c(28, 28, 1, 7), label = c(10, 7)),
                                        output.shape = NULL,
                                        initializer = mxnet:::mx.init.uniform(0.01),
                                        ctx = mx.gpu())

for (k in 1:6) {
  new_arg$arg.params[[k]] <- encoder_model$arg.params[[k]]
}

model.2 <- mx.model.FeedForward.create(symbol = m_logloss, X = my_iter2, optimizer = my_optimizer,
                                       eval.metric = my.eval.metric.loss,
                                       arg.params = new_arg$arg.params,
                                       array.batch.size = 20, ctx = mx.gpu(), num.round = 100)
model.2$symbol <- softmax

predict_Y <- predict(model.2, Test.X)
confusion_table <- table(max.col(t(predict_Y)), Test.Y)
cat("Testing accuracy rate =", sum(diag(confusion_table))/sum(confusion_table))
## Testing accuracy rate = 0.8385119
print(confusion_table)
##     Test.Y
##         0    1    2    3    4    5    6    7    8    9
##   1  1481    0   15   15    8   36   61    4   25   13
##   2     0 1758   21    2   14   12   10   15   21   10
##   3     1    9 1347   99   10    9   27   39   28    0
##   4    10   18   27 1400   12   70    5   35   75   54
##   5     3    2   45   13 1291   36   40   20    5  121
##   6    54   10   30  109   10 1198   51    2  107   10
##   7    52    5   31   23   15   40 1396    0    5    1
##   8     6    8   52   22    9   15    6 1561   31   87
##   9    49   38   76   44   57  119   39    7 1338   29
##   10    7    3   12   15  180   16   26   70   40 1317

練習3:欠完備的自編碼器與完備自編碼器於預測能力的差異

– 但一般的卷積網路通常都比較大,這樣encoder對於數據就不存在壓縮的效果了,把自編碼器的概念擴展到一般的卷積網路會有同樣優勢嗎?

– 這裡我們同樣運用小sample做實驗,我們重新做一個convolutional filter的數量的網路來訓練:

data <- mx.symbol.Variable('data')

# first conv
conv1 <- mx.symbol.Convolution(data = data, kernel = c(5, 5), num_filter = 16, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')
pool1 <- mx.symbol.Pooling(data = relu1, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool1')

# second conv
conv2 <- mx.symbol.Convolution(data = pool1, kernel = c(5, 5), num_filter = 32, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')
pool2 <- mx.symbol.Pooling(data = relu2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool2')

# third conv
conv3 <- mx.symbol.Convolution(data = pool2, kernel = c(4, 4), num_filter = 128, name = 'conv3')
relu3 <- mx.symbol.Activation(data = conv3, act_type = "relu", name = 'relu3')

# Softmax

fc1 <- mx.symbol.FullyConnected(data = relu3, num.hidden = 10, name = 'fc1')
softmax <- mx.symbol.softmax(data = fc1, axis = 1, name = 'softmax')

label <- mx.symbol.Variable(name = 'label')

eps <- 1e-8
m_log <- 0 - mx.symbol.mean(mx.symbol.broadcast_mul(mx.symbol.log(softmax + eps), label))
m_logloss <- mx.symbol.MakeLoss(m_log, name = 'm_logloss')

model.3 <- mx.model.FeedForward.create(symbol = m_logloss, X = my_iter2, optimizer = my_optimizer,
                                       eval.metric = my.eval.metric.loss,
                                       array.batch.size = 20, ctx = mx.gpu(), num.round = 100)
model.3$symbol <- softmax

predict_Y <- predict(model.3, Test.X)
confusion_table <- table(max.col(t(predict_Y)), Test.Y)
cat("Testing accuracy rate =", sum(diag(confusion_table))/sum(confusion_table))
## Testing accuracy rate = 0.8936905
print(confusion_table)
##     Test.Y
##         0    1    2    3    4    5    6    7    8    9
##   1  1477    0   12    8    9   24   36   13    2   13
##   2     0 1789    6    1    5    4    6    3    5    3
##   3    33    8 1432   44    0    2    5   48   19    1
##   4     0   11   35 1534    3   30    0   29   25   19
##   5     1    3   17    1 1352   17   19    2    1   47
##   6    27    1   15   75    4 1412   26   24   78   50
##   7    81    2   29    0   19   21 1514    0    9    0
##   8     8   12   45   19   12    2    0 1576   18   48
##   9    11   23   49   47   12   34   34    3 1476    9
##   10   25    2   16   13  190    5   21   55   42 1452

– 現在請你重新先訓練一個自編碼器,並且把encoder部分的參數用於轉移特徵學習,再看看效果如何!

練習3答案(1)

# Encoder

data <- mx.symbol.Variable('data')

conv1 <- mx.symbol.Convolution(data = data, kernel = c(5, 5), num_filter = 16, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')
pool1 <- mx.symbol.Pooling(data = relu1, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool1')

conv2 <- mx.symbol.Convolution(data = pool1, kernel = c(5, 5), num_filter = 32, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')
pool2 <- mx.symbol.Pooling(data = relu2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool2')

conv3 <- mx.symbol.Convolution(data = pool2, kernel = c(4, 4), num_filter = 128, name = 'conv3')
encoder <- mx.symbol.Activation(data = conv3, act_type = "relu", name = 'encoder')

# Decoder

deconv4 <- mx.symbol.Deconvolution(data = encoder, kernel = c(2, 2), stride = c(2, 2), num_filter = 32, name = 'deconv4')
relu4 <- mx.symbol.Activation(data = deconv4, act_type = "relu", name = 'relu4')

deconv5 <- mx.symbol.Deconvolution(data = relu4, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'deconv5')
relu5 <- mx.symbol.Activation(data = deconv5, act_type = "relu", name = 'relu5')

decoder <- mx.symbol.Deconvolution(data = relu5, kernel = c(7, 7), stride = c(7, 7), num_filter = 1, name = 'decoder')

# MSE loss

label <- mx.symbol.Variable(name = 'label')

residual <- mx.symbol.broadcast_minus(lhs = label, rhs = decoder) 
square_residual <- mx.symbol.square(data = residual)
mean_square_residual <- mx.symbol.mean(data = square_residual, axis = 0:3, keepdims = FALSE)
mse_loss <- mx.symbol.MakeLoss(data = mean_square_residual, name = 'mse')
model <- mx.model.FeedForward.create(symbol = mse_loss, X = my_iter1, optimizer = my_optimizer,
                                     eval.metric = my.eval.metric.loss,
                                     array.batch.size = 20, ctx = mx.gpu(), num.round = 20)

練習3答案(2)

data <- mx.symbol.Variable('data')

# first conv
conv1 <- mx.symbol.Convolution(data = data, kernel = c(5, 5), num_filter = 16, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')
pool1 <- mx.symbol.Pooling(data = relu1, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool1')

# second conv
conv2 <- mx.symbol.Convolution(data = pool1, kernel = c(5, 5), num_filter = 32, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')
pool2 <- mx.symbol.Pooling(data = relu2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool2')

# third conv
conv3 <- mx.symbol.Convolution(data = pool2, kernel = c(4, 4), num_filter = 128, name = 'conv3')
relu3 <- mx.symbol.Activation(data = conv3, act_type = "relu", name = 'relu3')

# Softmax
fc1 <- mx.symbol.FullyConnected(data = relu3, num.hidden = 10, name = 'fc1')
softmax <- mx.symbol.softmax(data = fc1, axis = 1, name = 'softmax')

label <- mx.symbol.Variable(name = 'label')

eps <- 1e-8
m_log <- 0 - mx.symbol.mean(mx.symbol.broadcast_mul(mx.symbol.log(softmax + eps), label))
m_logloss <- mx.symbol.MakeLoss(m_log, name = 'm_logloss')

mx.set.seed(0)
new_arg <- mxnet:::mx.model.init.params(symbol = m_logloss,
                                        input.shape = list(data = c(28, 28, 1, 7), label = c(10, 7)),
                                        output.shape = NULL,
                                        initializer = mxnet:::mx.init.uniform(0.01),
                                        ctx = mx.gpu())

for (k in 1:6) {
  new_arg$arg.params[[k]] <- model$arg.params[[k]]
}

model.4 <- mx.model.FeedForward.create(symbol = m_logloss, X = my_iter2, optimizer = my_optimizer,
                                       eval.metric = my.eval.metric.loss,
                                       arg.params = new_arg$arg.params,
                                       array.batch.size = 20, ctx = mx.gpu(), num.round = 100)
model.4$symbol <- softmax

predict_Y <- predict(model.4, Test.X)
confusion_table <- table(max.col(t(predict_Y)), Test.Y)
cat("Testing accuracy rate =", sum(diag(confusion_table))/sum(confusion_table))
## Testing accuracy rate = 0.9230357
print(confusion_table)
##     Test.Y
##         0    1    2    3    4    5    6    7    8    9
##   1  1573    0   14   14    2   17   12    0    9   11
##   2     0 1770    4    0    5    0    3    5    5    1
##   3     2   11 1495   18   10    1    1   26   16    1
##   4     2    4   29 1598    0   37    0   27   37   30
##   5     0    2   12    0 1418    4    8   10    0   39
##   6    19    0    5   44    0 1443   51    1   45    4
##   7    21    9   32    9   13   12 1566    0    6    0
##   8    35   13   33   20    6   11    0 1642   17   43
##   9     7   40   26   27    3   15   18    4 1502   13
##   10    4    2    6   12  149   11    2   38   38 1500

堆疊自編碼器(1)

F03

堆疊自編碼器(2)

F04

F05

– 當然,隨著時代演進,我們手上有眾多的工具用來解決梯度消失問題,而這整個過程非常的費力,所以現在已經幾乎沒有人用這個方式來訓練網路了。但透過自編碼器的輔助進行轉移特徵學習仍然是一個重要的應用方式,這「有機會」能增加最終模型的準確性!

結語

– 自編碼器其實還有非常多種類,像是「去噪自編碼器」(給輸入的圖像增加一些雜訊,而輸出保持原樣)以及「稀疏自編碼器」(限制Encoder的輸出,讓他們幾乎都是0。實現的方式很簡單,只要在損失函數中加上對Encoder的輸出的限制即可)等。實驗時都可以試著去用不同的自編碼器進行轉移特徵學習,以解決權重初始化問題。

– 解除馬賽克同樣也是一種自編碼模型,你現在是否能想像了?

F06