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Abstract
Emergency department (ED) triage scale determines the priority of patient care and foretells the prognosis. However, the 
information retrieved from the initial assessment is limited, hindering the risk identification accuracy of triage. Therefore, 
we sought to develop a 'dynamic' triage system as secondary screening, using artificial intelligence (AI) techniques to 
integrate information from initial assessment data and subsequent examinations. This retrospective cohort study included 
134,112 ED visits with at least one electrocardiography (ECG) and chest X-ray (CXR) in a medical center from 2012 to 
2022. Additionally, an independent community hospital provided 45,614 ED visits as an external validation set. We trained 
an eXtreme gradient boosting (XGB) model using initial assessment data to predict all-cause mortality in 7 days. Two deep 
learning models (DLMs) using ECG and CXR were trained to stratify mortality risks. The dynamic triage levels were based 
on output from the XGB-triage and DLMs from ECG and CXR. During the internal and external validation, the area under 
the receiver operating characteristic curve (AUC) of the XGB-triage model was >0.866; furthermore, the AUCs of DLMs 
using ECG and CXR were >0.862 and >0.886, respectively. The dynamic triage scale provided a higher C-index (0.914-
0.920 vs. 0.827-0.843) than the original one and demonstrated better predictive ability for 5-year mortality, 30-day ED revisit, 
and 30-day discharge. The AI-based risk scale provides a more accurate and dynamic stratification of mortality risk in ED 
patients, particularly in identifying patients who tend to be overlooked due to atypical symptoms.
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Introduction

Emergency department (ED) triage determines the urgency 
of a patient’s medical condition and rates the priority of care 
when the patient presents to the ED [1, 2]. Adequately allocat-
ing medical resources to critically ill patients through triage 
could mitigate mortality, while delays in timely intervention 
from EDs are associated with mortality [3, 4]. Several ED 
triage scales have been designed to prioritize patient acuities 
[5–8]. An exemplary system widely used in Taiwan is the 
Taiwan Triage and Acuity Scale (TTAS), a five-level model 
adapted from the Canadian Triage and Acuity Scale, incor-
porating chief complaints and other specific modifiers [7, 8]. 
However, despite these systems being rooted in substantial 
medical expertise, these systems largely hinge on evaluating 
patients’ present symptoms and vital signs.

Previous studies have shown that a substantial proportion 
of ED patients with lower acuity triage levels still deteriorate 
prematurely or die unexpectedly [9]. The currently avail-
able triage systems have shown variable validity in mor-
tality prediction, with some triage systems predicting ED 
mortality better than in-hospital mortality or hospitaliza-
tion [1, 10]. Several early warning scores, such as the Rapid 
Emergency Medicine Score (REMS) [11] and Triage Early 
Warning Score (TREWS) [12], have been proposed to pre-
dict in-hospital mortality; however, these models are limited 
to using parameters available at the ED triage. In contrast, 
certain machine-learning (ML) models that use triage data 
have shown the potential to predict in-hospital cardiac arrest. 
Nevertheless, these prediction models are also constrained 
using variables collected solely at the ED triage [13, 14].

Electrocardiography (ECG) and chest X-ray (CXR) are the 
two most popular tests in ED and are often used for further 
differential diagnosis. Widespread applications of deep learn-
ing models (DLMs) on ECG and CXR [15], AI-enabled ECG 
[16] and CXR [17] have been validated to extract mortality 
risk and further enable risk stratification. Studies have yet to 
integrate them into the ED triage scale for universal ED visits. 
ECG and CXR can identify characteristics of acute diseases, 
such as silent ST-segment elevation myocardial infarction 
[18], aortic dissection, and massive pulmonary thromboembo-
lism. Therefore, a triage system that dynamically incorporates 
critical information from these follow-up examinations once 
results are available could better detect risky ED patients and 
help physicians promptly reassess patients.

This study aimed to develop three AI models using informa-
tion obtained from triage, ECG, and CXR to identify patients at 
risk of in-hospital mortality after ED visits. Moreover, we inte-
grated and established an AI-enabled "dynamic" triage scale 
and explored its performance in mortality risk stratification. 
This dynamic ED triage scale may serve as secondary triage 
to improve safety and quality of care for patients admitted from

Methods

Data source

The records of ED visits were retrieved from two hospitals, 
Hospital A and Hospital B, from Apr 2012 to Feb 2022. 
The study flow charts and dataset generation are shown in 
Fig. 1. Hospital A, an academic medical center, provided 
614,078 ED visits from 295,748 patients, including 138,122 
visits (22.5%) with at least 1 ECG and CXR examination. 
Meanwhile, a community hospital, Hospital B, provided 
161,213 ED visits from 59,288 patients, including 46,101 
visits (28.6%) with at least 1 ECG and CXR examination. 
The visits from Hospital A were randomized by patients into 
three independent groups for the development set, tuning 
set, and internal validation set. The visits from Hospital B 
served as the external validation set. Details are provided in 
the Online Supplemental material etext 1.

Data annotation and variables

Each patient involved with an ED visit who had died 7 days 
after entering the ED was annotated as a case, and the oth-
ers were annotated as controls. Since ED visits might have 
more than 1 ECG/CXR in the development set, we applied 
the same annotation to all ECG/CXR records for each ED 
visit. Patient status (dead/alive) was captured through the 
electronic medical record (EMR). Although death could be 
at other hospitals, which our EMR would not capture, the 
proportion might be scarce since only 0.16% of readmis-
sions occurred at a different hospital [19]. We additionally 
collected specific resuscitative interventions as surrogate 
endpoints for ED visits who survived beyond 7 days. The 
ECG signals, CXR images, and relevant clinical information 
were recorded. The relevant clinical information, including 
physiological status and chief complaints recorded by tri-
age nurses. Details are provided in the Online Supplemental 
material etext 2.

For ED visits of original triage scale level 2 to 5 where 
the patient died within 7 days, we analyzed their cause of 
death. We further classified them as expected and unex-
pected events as reviewed by two independent investiga-
tors. The expected death was defined as those diagnosed 
with a terminal illness or condition that is likely to dete-
riorate and not expected to improve. The secondary out-
comes of interest included 5-year mortality, 30-day ED 
revisit, and 30-day discharge. For mortality, we used the 
last known live hospital encounter as the censored event 
to verify that the censored patients survived at the end 
of follow-up.

Moreover, we stratified each ED visit into admitted visits 
and nonadmitted visits. For the 30-day ED revisit, there 
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were only nonadmitted visits in this analysis. For the 30-day 
discharge, we analyzed the odds of discharge by the length 
of inpatient stay without death in the admitted visits, calcu-
lated from the admission date to the discharge date. Cases of 
in-hospital death were censored data in this analysis.

Model development

We used the eXtreme gradient boosting (XGB) model to 
integrate the original triage information for predicting death 
within 7 days, and this model had a logistic output for binary 
classification. This model was trained by data in the devel-
opment set, and the hyperparameters were selected based on 
the model performance in the tuning set. The DLM for ECG 
was used to predict the likelihood of death based on a con-
volutional neural network with 82 trainable layers, described 
in our previous study [20]. The training details of the DLM 
for CXR were revised from a previous study which was a 
121-layer DenseNet [21]. The details for the above models 
are provided in the Online Supplemental material etext 3.

Statistical analysis

The receiver operating characteristic (ROC) curve and AUC 
were applied to measure model performance. The operating 
point was selected based on the maximum of Youden’s index 

for detecting HT in the tuning set, and internal and external 
validation shared the same operating point to calculate the cor-
responding sensitivity, specificity, positive predictive value, 
and negative predictive value. We also used multivariable 
Cox proportional hazard models to analyze the relationship 
between AI prediction and outcomes of interest. Sex- and 
age-adjusted hazard ratios (HRs) and 95% conference inter-
vals (95% CIs) were used for comparison, and Kaplan‒Meier 
curve analysis was used for visualization. The Spearman 
correlation coefficient was used to measure the relationship 
between each AI prediction, and the polychoric correlation 
coefficient (r) was used to quantify the relationship between 
two ordinal variables. The statistical analysis was carried out 
using the software environment R version 3.4.4 with a signifi-
cance level of p < 0.05.

Results

The baseline characteristics of the ED visits

The patient characteristics of each dataset are shown in 
Table 1. The proportions of patients who died within 7 
days were 1.7%, 1.8%, 1.9%, and 1.4% in the develop-
ment, tuning, internal validation, and external validation 
sets, respectively. A higher proportion of original triage 
level 1 (8.7-9.1%) was presented in Hospital A than in 

Fig. 1  Study flow charts and dataset generation. Schematic of the 
dataset creation and analysis strategy, devised to ensure a robust and 
reliable dataset for training, validating, and testing of the network. 
Once a patient’s data were placed in one of the datasets, that indi-

vidual’s data were used only in that set, avoiding ‘cross-contamina-
tion’ among the training, validation, and test datasets. The details of 
the flow chart and how each dataset was used are described in the 
Methods
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Hospital B (5.3%), while a lower proportion of patients 
were discharged from Hospital A (49.8-50.6%) compared 
to Hospital B (51.6%). These results indicate that the ED 
visits in the internal validation set had higher severity 
than the external validation set. Online Supplemental 
material eTable 1 shows the detailed ED triage assess-
ment in each dataset.

The performance for 7‑day death prediction

Figure 2A shows the risk of death within 7 days stratified 
by the original triage scale. In the internal validation set, 
the original triage level 1 group had a significantly higher 
incidence of all-cause mortality at 7 days (11.0%) com-
pared to level 2 (1.9%) and levels 3/4/5 groups (0.4%), 
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Fig. 2  Summary of model performance for predicting all-cause mor-
tality within 7 days in the internal and external validation sets. A 
Kaplan–Meier curve analysis for the original triage scale. The analy-
ses were conducted in both the internal and external validation sets. 
The table shows the at-risk population and cumulative risk for the 
given time intervals in each risk stratification. B ROC curves of the 
risk prediction based on the AI model using the information at tri-
age, electrocardiogram (ECG), and chest X-ray (CXR). The operat-

ing point was selected based on the maximum of Youden’s index in 
the tuning set and was presented using a circle mark. The area under 
the ROC curve (AUC), sensitivity (Sens.), specificity (Spec.), positive 
predictive value (PPV), and negative predictive value (NPV) were 
calculated. The cases are the patients who died within 7 days, and the 
controls are those who were alive for more than 7 days. Patients miss-
ing within 7 days were excluded from this analysis
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with an adjusted HR of 21.85 (95% CI: 17.33-27.54). This 
trend was also present in the external validation set. The 
C-indices were 0.843 and 0.827 in the internal and external 
validation sets.

The original triage scale attained AUCs of 0.808/0.772 
in the internal/external validation sets, and the XGB 
model further enhanced accuracy by utilizing other fea-
tures, shown in Online Supplemental material eFig. 1A. 
Also, Online Supplemental material eFig.1B shows the 
prediction by the XGB model that provided further risk 
stratification independent of the original triage scale. As 
shown in Fig. 2B, the XGB model using triage information 
achieved AUCs of 0.8896/0.8663 in the internal/external 
validation sets for predicting death within 7 days, imply-
ing the ultimate accuracy in predicting short-term death 
initially at triage.

While the XGB model demonstrated good risk strati-
fication, it was restricted to original triage information. 
The DLM with ECG achieved AUCs of 0.8616/0.8596 in 
internal/external validation, while the CXR AUCs were 
0.8915/0.8858 (Fig. 2B), indicating the significance of 
additional information beyond original triage for death 
prediction. Of note, all AI predictions provided a better 
predictive ability for mortality within 7 days than the origi-
nal triage scale.

The generation of a dynamic triage scale

Online Supplemental material eFig. 2 displays the HRs in the 
stratified analysis by the original triage scale, XGB model 
with original triage information, and DLM with ECG and 
CXR regarding mortality within 7 days. These results were 
all lower compared to the naïve analysis (Fig. 2A), and the 
ability of risk stratification was lower in the ED visits with 
original triage level 1 compared to the ED visits with original 
triage levels 2-5. This phenomenon implied the repetitiveness 
of the information in the original triage scale and AI predic-
tions, and Online Supplemental material eFig. 3 validated 
this conjecture with Spearman correlation coefficients of 
0.339-0.650. Notably, the XGB model with original triage 
information had a stronger correlation than the DLMs with 
ECG/CXR to the original triage scale, highlighting the sig-
nificance of non-triage data. Moreover, the correlations in 
these three AI models ranged from 0.599 to 0.689.

However, the models can still effectively identify abundant 
high-risk patients, significantly impacting risk stratification. 
Figure 3A summarizes the stratification by the original triage 
scale and AI predictions. We combined HR-matching sub-
groups marked by the same color and proposed a new triage 
scale - the dynamic triage scale - which involves extra assess-
ments beyond the triage station. For ED visits with an original 
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Fig. 3  Integration analysis of the AI model using information at tri-
age, electrocardiogram (ECG), and chest X-ray (CXR). A The risk 
matrix of patients with different conditions. The HRs are adjusted 
by sex and age, and the proportions below are the patients who died 
within 7 days in each group. We regrouped them into three triage lev-
els: dynamic triage 3 (All negative, light orange), dynamic triage 2 (1 

positive, light purple), and dynamic triage 1 (≥ 2 positive, dark pur-
ple). B Kaplan–Meier curves for each dynamic triage level on 7-day 
death. The analyses are conducted in both the internal and external 
validation sets. The table shows the at-risk population and cumulative 
risk for the given time intervals in each risk stratification
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triage scale of level 1, the three AI models consistently pre-
dicted that negative results were defined as a "dynamic tri-
age scale of level 2", and ≥1 positive result was defined as 
a "dynamic triage scale of level 1". For lower levels of the 

original triage scale (levels 2-5), negative results were defined 
as "dynamic triage scale of level 3", with one positive result 
defined as "dynamic triage scale of level 2", and ≥2 positive 
results defined as "dynamic triage scale of level 1". Online 
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Fig. 4  Proportions of resuscitative measures stratified by original and 
dynamic triage scales for patients alive within 7 days. Proportions of 
resuscitative measures stratified by original and dynamic triage scales 
for patients alive within 7 days. Abbreviations: ECMO, extracorpor-

eal membrane oxygenation; CPR/defib, cardiopulmonary resuscita-
tion/defibrillation; CVC, central venous catheter; TI, tracheal intuba-
tion; IV, invasive ventilation; EPI, epinephrine; NE, norepinephrine; 
DA, dopamine
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Supplemental material eFig. 4 displays a stratified analysis 
by the original triage scale, XGB model with triage data, and 
DLM with ECG and CXR, regarding mortality within 7 days. 
We observed that detailed combinations of conditions may 
not be crucial for every triage scale, but the models can still 
effectively identify a large number of high-risk patients, which 
can greatly impact risk stratification.

Using the proposed dynamic triage scale, the dynamic 
triage level 1 and the dynamic triage level 2 groups had 
a 65.73-77.04- and a 7.54-9.49-fold risk of death within 7 
days, respectively, compared to the dynamic triage level 
3 group (Fig. 3B). Online Supplemental material eFig. 5 
shows the comparison between the original triage scale and 
the proposed dynamic triage scale regarding risk stratifi-
cation ability. Notably, dynamic triage level 3 had a lower 

7-day mortality rate (0.1%) than the original triage scale 
level 3 (0.4%), with a similar number of patients in both. 
Likewise, the number of patients in dynamic triage level 
1A (original triage level 1 with ≥2 positive AI findings) 
and original triage level 1 became similar, demonstrating 
the effectiveness of dynamic triage. It illustrated dynamic 
triage scale could improve risk stratification without increas-
ing ED loading.

Further application of the dynamic triage scale

Figure 4 shows the proportions of eight resuscitative events 
identified by original and dynamic triage for ED visits in 
which the patient survived for 7 days. The dynamic triage 
scale found more critically ill patients requiring resuscitative 

Fig. 5  Kaplan–Meier curves for each dynamic triage level on 5-year 
all-cause mortality, 30-day ED revisit, and 30-day discharge. The 
analyses are conducted in both internal and external validation sets. 

The table shows the at-risk population and cumulative risk for the 
given time intervals in each risk stratification



 Journal of Medical Systems           (2023) 47:81 

1 3

   81  Page 8 of 10

interventions than the original scale. For ED visits with an 
original triage level of 2-5, Online Supplemental material 
eFig. 6 showed a mild association between the severity of the 
dynamic triage scale and expected death defined by physi-
cians. The polychoric correlation coefficients of 0.451/0.301 
highlight the need for human-machine cooperation. The 
detailed cause-related death stratified by the dynamic triage 
scale is shown in Online Supplemental material eFig. 7. As 
the severity of the dynamic triage scale increased from 3 
to 1, the proportion of respiratory and oncological disease-
related deaths increased significantly.

The median follow-up time for the internal and external 
validation sets is 1.85 years (interquartile range: 0.55–3.76 
years) and 2.28 years (interquartile range: 0.79–4.45 years), 
respectively. Figure 5 depicts the long-term follow-up analy-
sis of ED visits that patients survived for 7 days. The severe 
dynamic triage scale was prone to a higher risk of all-cause 
mortality [adjusted HRs = 7.15-7.25 (level 1 vs. levels 3) 
and 3.36-3.71 (level 2 vs. levels 3)]. The dynamic triage 
scale also assesses the risk of revisits within 30 days for 
nonadmitted ED visits, with higher risk seen in levels 1 and 
2 compared to level 3 [adjusted HRs = 2.05-2.32 (level 1) 
and 1.68-1.69 (level)]. For admitted ED visits, dynamic tri-
age levels 1 (adjusted HRs = 0.42) and 2 (adjusted HRs 
= 0.65-0.66) were prone to delayed discharge in 30 days 
compared to dynamic triage level 3, highlighting the worth 
of the dynamic triage scale for assessing risk in discharged 
ED patients.

Discussion

This study developed three AI models of ED triage using 
the information at triage, ECG, and CXR. This AI-enabled 
dynamic triage scale was proposed by integrating inputs 
from these three sources to stratify the risk of ED patients. 
ED triage is implemented to appraise both the "acuity" and 
"severity" of patients. While original triage systems evaluate 
patient acuity based on initial assessments, our dynamic tri-
age system primarily focuses on and is superior to mortality 
risk stratification. It is a beneficial secondary triage tool 
to enhance risk awareness among healthcare providers in 
crowded EDs.

AI interventions, such as radiographic imaging analysis 
and prediction-based diagnoses [22–29], show promising in 
improving emergency care. Our DLMs, which use ECG and 
CXR, have achieved AUCs comparable to those in previ-
ous studies for stratifying mortality risk [16, 17]. Intelligent 
triage systems for prognosis prediction often use informa-
tion recorded at triage, such as age, gender, vital signs, and 
chief complaints, to predict prognosis [29]. In a previous 
study using these variables, an AUC of 0.86 was achieved 

on admission to the intensive care unit or in-hospital death 
[30]. That is similar to our XGB model, with an AUC of 
0.87-0.89. However, the limited availability of most exami-
nations at the initial triage has hindered the performance 
of AI models for predicting prognosis. Therefore, the nov-
elty of this study lies in integrating ECG, CXR, and triage 
information into a triage system. This dynamic triage scale 
achieved a high C-index (0.914-0.920) through information 
integration and is significantly better than the original triage 
scale (0.827-0.843) and the AI model that only used triage 
information (AUC = 0.890/0.866).

We reviewed 691 ED visits that were originally triaged 
as levels 2 to 5 and resulted in death within 7 days, with 
75 cases (10.9%) being unexpected. Among the unexpected 
deaths, we identified 18 probably preventable cases, includ-
ing 11 of cardiovascular origin and 6 of pulmonary origin 
(data not shown). AI models identified 12 cases (66.7%) as 
having a dynamic triage scale of level 1 and 3 cases (16.7%) 
as having a dynamic triage scale of level 2 (selected cases 
shown in Online Supplemental material eFigs. 8-9). AI 
could aid in early intervention to prevent tragic events such 
as sudden in-hospital cardiac arrest, generally attributed to 
cardiovascular and respiratory etiologies [31]. False posi-
tives with a dynamic triage scale level 1, which predicts 
long-term outcomes, may still benefit from clinically rel-
evant predictions. Additionally, the false-positive predictions 
by DLM have been validated and linked to poor prognoses, 
serving as an objective assessment for inpatient manage-
ment [32–34].

AI models in EDs can cause alert fatigue via frequent 
alarms with individual warning systems [35]. While AI-
enabled ECG [36] and CXR [37] support risk prediction, 
an integrated and precise clinical decision support system 
may be a better secondary triage tool in EDs, as clinicians 
often override medical alerts [38]. The mortality analysis 
shows a high correlation between physicians’ expectations 
and our dynamic triage scale, indicating its high consistency 
and acceptability in clinical practice. The number of people 
in dynamic triage level 3 is comparable to the original tri-
age scale levels 3/4/5. However, the 7-day mortality rate is 
notably lower in our dynamic triage level 3 (0.1%) than in 
the original triage levels 3/4/5 (0.4%), suggesting that our 
AI-based triage system could enhance efficiency in the ED. 
Our dynamic triage system has been designed to include 
original triage data along with the results from CXRs and 
ECGs when they are available. Furthermore, the system is 
discretionary for clinicians, allowing them to arrange ECG 
or CXR tests as they deem fit.

Certain limitations of this study should be mentioned. 
Firstly, this study only retrospectively validated established 
DLMs and proposed an improved dynamic risk tool. Clini-
cal benefits should be confirmed through prospective trials. 



Journal of Medical Systems           (2023) 47:81  

1 3

Page 9 of 10    81 

Secondly, ECG/CXR examinations were not restricted by 
time, with some patients receiving these tests more than 
two hours after ED admission. However, since most patients 
were triaged before complete data was available, this AI 
dynamic triage tool is only intended as decision support 
for secondary triage rather than to replace clinical judg-
ment. Thirdly, the black box limitation of DLM may make 
it challenging for physicians to differentiate high-risk from 
low-risk patients. Nevertheless, physicians can reevaluate 
patients and offer high-intensity care to lower mortality 
risk [3]. Finally, our study, conducted in a tertiary medical 
center with rare patient transfers and untracked outcomes 
post-discharge, affects the generalizability. However, the sig-
nificance of our findings remains. Future research should 
address these gaps for broader applicability.

This study developed an AI-enabled dynamic ED tri-
age scale to objectively and accurately stratify patient risk, 
benefiting asymptomatic urgent patients initially triaged at 
a non-urgent level. Using an AI-assisted ECG recommen-
dation system to expedite ECG acquisition and prediction 
input improves the efficiency of dynamic triage [39]. These 
features support the implementation of the dynamic triage 
scale and enhance the quality of care in fast-paced EDs. 
Future studies should include more medical examinations in 
the dynamic triage model to improve its predictability and 
the quality of care in the ED.
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