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Point-of-care artificial intelligence-enabled ECG for
dyskalemia: a retrospective cohort analysis for accuracy and
outcome prediction
Chin Lin 1,2,3, Tom Chau 4, Chin-Sheng Lin1,5, Hung-Sheng Shang6, Wen-Hui Fang7, Ding-Jie Lee8, Chia-Cheng Lee9,10,
Shi-Hung Tsai11, Chih-Hung Wang12,13 and Shih-Hua Lin 8✉

Dyskalemias are common electrolyte disorders associated with high cardiovascular risk. Artificial intelligence (AI)-assisted
electrocardiography (ECG) has been evaluated as an early-detection approach for dyskalemia. The aims of this study were to
determine the clinical accuracy of AI-assisted ECG for dyskalemia and prognostic ability on clinical outcomes such as all-cause
mortality, hospitalizations, and ED revisits. This retrospective cohort study was done at two hospitals within a health system from
May 2019 to December 2020. In total, 26,499 patients with 34,803 emergency department (ED) visits to an academic medical center
and 6492 ED visits from 4747 patients to a community hospital who had a 12-lead ECG to estimate ECG-K+ and serum laboratory
potassium measurement (Lab-K+) within 1 h were included. ECG-K+ had mean absolute errors (MAEs) of ≤0.365 mmol/L. Area under
receiver operating characteristic curves for ECG-K+ to predict moderate-to-severe hypokalemia (Lab-K+ ≤3mmol/L) and moderate-
to-severe hyperkalemia (Lab-K+ ≥ 6mmol/L) were >0.85 and >0.95, respectively. The U-shaped relationships between K+

concentration and adverse outcomes were more prominent for ECG-K+ than for Lab-K+. ECG-K+ and Lab-K+ hyperkalemia were
associated with high HRs for 30-day all-cause mortality. Compared to hypokalemic Lab-K+, patients with hypokalemic ECG-K+ had
significantly higher risk for adverse outcomes after full confounder adjustment. In addition, patients with normal Lab-K+ but
dyskalemic ECG-K+ (pseudo-positive) also exhibited more co-morbidities and had worse outcomes. Point-of-care bloodless AI ECG-
K+ not only rapidly identified potentially severe hypo- and hyperkalemia, but also may serve as a biomarker for medical complexity
and an independent predictor for adverse outcomes.
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INTRODUCTION
Potassium (K+) is the principal intracellular cation and functions to
maintain the electrical gradient across cell membranes. The
concentration of K+ in plasma is determined by the distribution
of K+ between intracellular and extracellular fluid (ECF) and by
renal K+ excretion. Thus, dyskalemias, including hypokalemia and
hyperkalemia, usually arises from derangements of transcellular
K+ shift1 and/or defective renal/extrarenal K+ excretion2. Dyska-
lemia causes cardiovascular, neuromuscular, renal and metabolic
disturbances, and is a common electrolyte abnormality associated
with cardiovascular complications and increased mortality3,4. Up
to 20–50% of patients hospitalized for acute illnesses have
hypokalemia (plasma K+ value ≤3.5 mmol/L) and 2–5% have
hyperkalemia (K+ ≥5.5 mmol/L)5. In our recent study, 22% and 2%
of all patients visiting the emergency department (ED) had
hypokalemia and hyperkalemia, respectively6. Traditionally, the
diagnosis of dyskalemia relies on blood tests with varying
turnaround times7.

Electrocardiography (ECG), as a prompt, non-invasive, and
convenient bedside tool, may detect electrical changes associated
with dyskalemias, including altered PR interval, QRS, ST-segment,
T-wave amplitude, and/or corrected QT interval8. However, these
morphologic ECG changes associated with dyskalemias may not
be easily recognized even by experienced physicians or cardiol-
ogists. With the revolution and advancement of artificial
intelligence (AI) techniques, deep learning models (DLM)9 have
been shown to achieve human-level performance and effectively
detect cardiac diseases with large annotated ECG datasets10–16.
Based on analysis of an annotated 66,000-ECG dataset, we have
successfully used DLM to develop ECG12Net for the rapid
quantitative estimation of blood K+ concentration to detect
dyskalemias in the ED6. However, a “black-box pragmatic study“17

to validate the accuracy of bloodless detection of dyskalemias
based on AI-ECG is still warranted before integration into routine
clinical workflows.
Laboratory dyskalemia is widely known to be associated with

higher morbidity and mortality in populations with different
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diseases such as diabetes mellitus, chronic kidney disease, acute
myocardial infarction and chronic heart failure3,5,18–21. However,
the clinical applicability and significance of AI-enhanced ECG for
the detection of dyskalemia remains unclear. Moreover, the
association between ECG-dyskalemia and outcomes has not been
evaluated. Since ECG is more germane to the underlying
pathophysiological and electrical changes in the heart, both
systemic and cardiac disorders may cause abnormal ECGs. We
hypothesize that abnormal ECG-K+ with normal Lab-K+ may be a
surrogate for underlying cardiac conditions portend worse
outcomes than patients with both normal values.
In this retrospective cohort over 1.5 years, we aimed to

determine the clinical accuracy of real-time AI-assisted ECG for
dyskalemia with external validation and examined patient out-
comes in a large cohort with different combinations of ECG-K+

and Lab-K+. As shown in the Graphical abstract, our AI-enabled
ECG system rapidly calculated ECG-K+ for point-of-care support in
the ED and achieved comparable accuracy to previous stu-
dies6,10,22 in detecting moderate-to severe dyskalemia. In addition,
when ECG-K+ and Lab-K+ were discordant, ECG-K+ was more
predictive of subsequent all-cause mortality, hospitalizations, and
ED revisits.

RESULTS
Timing and incidence of ECG and lab-based dyskalemia
At the medical center, the wait time between order entry and ECG
test and blood draw were 21.5 ± 17.9 and 26.2 ± 9.3 min,
respectively; the Lab-K+ resulted at 64.3 ± 16.5 min. At the
community hospital, the wait time for ECG and blood draw were
20.8 ± 15.2 and 24.6 ± 9.1 min, respectively, and the Lab-K+

resulted at 54.9 ± 15.5 min. The ECG-K+ was available much
sooner than the Lab-K+ at both the academic medical center
(42.8 ± 22.5 min) and community hospital (34.1 ± 18.8 min). For
Lab-K+, there were 7,313 (21.0%) visits with mild to severe
hypokalemia and 745 (2.1%) visits with mild to severe hyperka-
lemia at the academic medical center. There were 1151 (17.7%)
visits with mild to severe hypokalemia and 92 (1.4%) visits with
mild to severe hyperkalemia at the community hospital. For ECG-
K+, there were 4331/719 (12.4%/2.1%) visits with ECG-K+

≤3.5 mmol/L/ECG-K+ ≥ 5.5 mmol/L at the academic medical center
and 778/114 (12.0%/1.8%) visits at the community hospital.
Compared to Lab-K+, the distribution of ECG-K+ was more
concentrated (Fig. 1B), suggesting that abnormal values of ECG-
K+ might be more important due to the algorithm’s tendency to
make more conservative predictions.

Accuracy of AI-ECG detection for dyskalemia
The mean absolute errors (MAEs) of Lab-K+ and ECG-K+ were
0.365 and 0.364mmol/L at the medical center and community
hospital, respectively. The ECG-K+ calculated with 12 leads was
more accurate than using any one lead (Supplementary Fig. 1). As
shown in Fig. 2, for the detection of severe hypokalemia (Lab-K+

≤2.5) and hyperkalemia (Lab-K+ ≥6.5), ECG-K+ achieved area
under curves (AUCs) of 0.9497/0.9658 with sensitivities of 93.3%/
93.8% and specificities of 84.7%/91.8% at the academic medical
center; the AUCs were 0.9194/0.9865 with sensitivities of 93.3%/
100.0% and specificities of 85.4%/92.3% at the community
hospital. Although the AUCs declined modestly for the detection
of moderate (Lab-K+ ≤3.0 or Lab-K+ ≥6.0) to mild (Lab-K+ ≤3.5 or
Lab-K+ ≥5.5) dyskalemia, the values were still higher than 0.85
except for mild hypokalemia. The positive and negative predictive
values were 29.1–34.2% and 90.8–91.5%, respectively, for detect-
ing hypokalemia (Lab-K+ ≤3.5 mmol/L). Due to the low prevalence
of hyperkalemia (1.4–2.1%), the positive and negative predictive
values were 10.4–14.7% and 99.7–99.8%, respectively, for detect-
ing hyperkalemia (Lab-K+ ≥5.5 mmol/L). As shown in

Supplementary Fig. 2, mild hypokalemia as predicted by ECG-K+

was significantly associated with increasing age and co-
morbidities including diabetes mellitus (DM), hypertension
(HTN), chronic kidney disease (CKD), stroke (STK), heart failure
(HF), and chronic obstruction pulmonary disease (COPD). This
suggests that these patients are likely sicker with underlying organ
dysfunction than patients with lab-hypokalemia but normal ECG-
K+ (false negative). ECG-K+ performance was strong across all
degrees of hyperkalemia. Comparing the performance of 12 leads
versus each lead, the AI-enabled algorithm using 12 leads was
more accurate in all analyses (Supplementary Fig. 3).

Patients’ characteristics in lab and AI-ECG dyskalemia
Patients’ characteristics are shown in Supplementary Table 1.
Between the academic medical center and community hospital,
the prevalence of co-morbidities were HTN 39.1%/51.4%, hyperli-
pidemia (HLP) 31.8%/43.1%, coronary artery disease (CAD) 25.8%/
32.0%, DM 24.9%/32.5%, STK 18.3%25.0%, COPD 15.6%/27.6%,
CKD 14.9%/15.2%, and HF 12.2%/14.9%. Elevated blood sugar,
creatinine, CRP, PCT, pBNP, D-dimer, and proteinuria were
frequently observed in these ED visits (40.1%/42.8%), suggesting
that each ED visit was related to different stress conditions, such
as acute or chronic renal failure, infections with or without sepsis,
cardiovascular, cardiopulmonary, or metabolic complications.
Patients with hyperkalemic Lab-K+ (≥5.5 mmol/L) exhibited

significantly greater age, predilection for DM, HTN, CKD, CAD, HF,
and lower blood pressure than patients with normal Lab-K+

(3.6–5.4 mmol/L) and hypokalemic Lab-K+ (≤3.5 mmol/L) (Fig. 3).
Significantly higher plasma creatinine, blood urea nitrogen (BUN),
NT-pro-B type natriuretic peptide (pBNP), D-dimer, glucose,
procalcitonin (PCT), C-reactive protein (CRP), SGOT/SGPT and
lower hemoglobin, albumin, sodium (Na+), bicarbonate (HCO3)
and blood pH value were also observed. Patients with hypoka-
lemic Lab-K+ did not show significant differences compared to
those with normal Lab-K+ with regards to age, co-morbidities (DM,
HTN, HLP, CKD, CHF, and CAD), and most laboratory data (renal
function, liver function, pBNP, glucose, D-dimer, hemoglobin,
albumin, HCO3, and blood pH value) except for slightly higher
white blood count (WBC) and CRP.
Like hyperkalemic Lab-K+, patients with predicted hyperkalemic

ECG-K+ (≥5.5 mmol/L) were more complex, including older age,
more co-morbidities (DM, HTN, CKD, and HF) and significantly
higher glucose, CRP, pBNP, D-dimer, proteinuria, and lower serum
albumin compared with those with normal ECG-K+ (3.6–5.4 mmol/
L) or hypokalemia (≤3.5 mmol/L) (Fig. 3). Patients with hypoka-
lemic ECG-K+ had significantly higher glucose, CRP, pBNP, D-
dimer, proteinuria, and lower serum albumin compared to those
with normal ECG-K+. Compared to hypokalemic Lab-K+, patients
with hypokalemic ECG-K+ had older age, more co-morbidities
(DM, HTN, CKD, and HF) with significantly higher glucose, CRP,
pBNP, D-dimer, proteinuria and lower serum albumin. Details of
the relationship between other patients’ characteristics and K+

concentrations are shown in Supplementary Fig. 4.

Risk relationship between AI-ECG and lab dyskalemia
During a median follow-up of 3.9 months (interquartile range:
0.5–10.7 months) for the medical center and 4.5 months
(0.5–11.2 months) for the community hospital, the gross mortality
rates were 4.1% (1414/34,803) and 2.8% (179/6492) at the medical
center and community hospital, respectively. There was a
significantly increased risk of death (HR 3.66, 95% CI 3.02–4.44)
in patients with hyperkalemic Lab-K+ (≥5.5 mmol/L) but not in
those with hypokalemic Lab-K+ (≤3.5 mmol/L) [hazard ratio (HR)
1.03, 95% confidence interval (CI) 0.91–1.16] compared with
normokalemia (Lab-K+ 3.6–5.4 mmol/L) (Fig. 4A). Using the ECG-
K+, increased mortality was seen in both ECG-hypokalemia (HR
1.43, 95% CI 1.25-1.63) and ECG-hyperkalemia (HR 2.69, 95% CI
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2.15–3.36). The relationships between all-cause mortality and the
range of measured Lab-K+ and predicted ECG-K+ from 2 to
7mmol/L are shown in Fig. 4B. The lowest risk for all-cause
mortality occurred in Lab-K+ between 2 and 4.5 mmol/L, with
increasing risk above 4.5 mmol/L and the highest risk for Lab-K+

≥6mmol/L (more than fourfold risk). The relationship between
ECG-K+ and all-cause mortality revealed a prominent U-shape,
with ECG-K+ <3mmol/L carrying higher risk. The concordance
index (C-index) of ECG-K+ for all-cause mortality in the baseline
model was 0.615 (95% CI 0.600–0.630), which was significantly
better than Lab-K+ (0.598, 95% CI 0.582–0.614, p= 0.002).
We further explored the reasons behind the predictive ability of

ECG-K+. Supplementary Fig. 5 shows the risk-effect analyses of
patient characteristics with Lab-K+ and ECG-K+. Gender, age,

systolic blood pressure (SBP), diastolic blood pressure (DBP), HLP,
hemoglobin (Hb), HCO3, blood pH, sodium (Na+), aspartate
aminotransferase (AST), alanine aminotransferase (ALT), Alb, CRP,
pBNP, and D-dimer were independently correlated with all-cause
mortality. After adjusting for these risk factors, the C-index of ECG-
K+ (C-index 0.834, 95% CI 0.826–0.843) was no longer significantly
different (p= 0.891) from that of Lab-K+ (C-index 0.835, 95% CI
0.826–0.844).
The hospitalization rates were 38.3% (13,330/34,803) and 37.8%

(2452/6492) at the medical center and community hospital,
respectively. In the hospitalization analysis (Fig. 4B), both ECG-
K+ and Lab-K+ showed a U-shaped relationship between K+ and
the risk of hospitalization. Although the risk curves between
hyperkalemic values of ECG-K+ and Lab-K+ and hospitalization

Fig. 1 Study cohorts’ summary. A Dataset generation based on emergency department visits to an academic medical center and a
community hospital; (B) The distributions of ECG-K+ and Lab-K+ at the academic medical center and community hospital.
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were similar, the risk between hypokalemic ECG-K+ and hospita-
lization was more pronounced than that of Lab-K+. The AUC of
ECG-K+ on hospitalization in the baseline model was 0.605 (95% CI
0.599-0.610), significantly higher (p < 0.001) than that of Lab-K+

(0.579, 95% CI 0.573–0.585). Age, gender, body mass index (BMI),
smoke, DBP, HLP, STK, HF, WBC count, Hb, platelet (PLT), HCO3,
Blood pH, Na+, chloride (Cl−), total calcium (tCa++), GLU, AST,
creatine kinase (CK), Alb, CRP, troponin I (TnI), and D-dimer were
significantly associated with the risk of hospitalization (Supple-
mentary Fig. 5). After full adjustment, the predictive ability of ECG-
K+ for hospitalization was still significantly higher than that of Lab-
K+ (p= 0.010).
ED revisits within 30 days were 13.2% (2,836/21,473) and 15.8%

(637/4,040) at the medical center and community hospital,
respectively. There was a U-shaped relationship between plasma
K+ and the probability of ED revisits (Fig. 4B). The C-index of ECG-
K+ on ED revisits in the baseline model was 0.544 (95% CI 0.534-
0.554), significantly higher (p= 0.018) than that of Lab-K+ (0.534,
95% CI 0.524–0.544). Gender, DM, CAD, STK, COPD, Hb, and Na+

were independent risk factors for ED revisits besides Lab-K+ and
ECG-K+ (Supplementary Fig. 5). After full adjustment, the
predictive ability of ECG-K+ for ED revisits was similar to that of
Lab-K+.

Characteristics and risk analysis in patients with discrepant
Lab-K+ and ECG-K+

Patients with a normal Lab-K+ but abnormal ECG-hypokalemia
(ECG-K+ ≤3.5 mmol/L or false-positive hypokalemia) were more
medically complex, including older age and more co-morbidities
(DM, HTN, CKD, and HF), compared to those with normal Lab-K+

and ECG-K+ (3.6–5.4 mmol/L) (Fig. 5). Patients with ECG-
dyskalemia but normal Lab-K+ also had significantly higher
glucose, CRP, pBNP, D-dimer, proteinuria, and lower serum
albumin. Patients with hypokalemic Lab-K+ but normal ECG-K+

(false-negative hypokalemia) were less medically complex, pre-
senting with younger age, fewer co-morbidities (DM, HTN, CKD,
HF, or proteinuria), lower stress markers (glucose, CRP, pBNP, D-
dimer), and higher Alb than those with normal Lab-K+ and
ECG-K+. This trend was less obvious in patients with hyperkalemic

Lab-K+ but normal ECG-K+. Details of other characteristics are
shown in Supplementary Fig. 6.
Outcome analyses in patients with various combinations of Lab-

K+ and ECG-K+ are shown in Fig. 6. Compared with patients with
both normal Lab-K+ and ECG-K+ (3.6–5.4 mmol/L), those with
concordant hyperkalemia (≥5.5 mmol/L by ECG and lab) and
hypokalemia (≤3.5 mmol/L) had higher all-cause mortality within
30 days (HR for the former and the latter, 4.2 (95% CI 3.22–5.47)
and 1.46 (95% CI 1.22–1.73), respectively). Patients with normal
Lab-K+ but dyskalemic ECG-K+ exhibited higher HR for all-cause
mortality in both extremes (HR 1.4, 95% CI 1.16–1.69 for
hypokalemic ECG-K+ and HR 1.49, 95% CI 1.00–2.24 for
hyperkalemic ECG-K+). However, the all-cause mortality risk were
significantly lower in patients with abnormal Lab-K+ but normal
ECG-K+ (HR 0.87 vs. 1.46 for the lab-hypokalemia group, and HR
3.35 vs. 4.2 for the lab-hyperkalemia group). In terms of
hospitalization, the findings were similar to all-cause mortality.
Patients with normal Lab-K+ but dyskalemic ECG-K+ had
significantly higher risk for hospitalization [hypokalemic ECG-K+:
odds ratio (OR) 1.42, 95% CI 1.34–1.51 and hyperkalemic ECG-K+:
OR 1.95, 95% CI 1.72–2.21]. Similar trends were found regarding
hypokalemic ECG-K+ on ED revisits, which persisted in adjusted
models.
Based on the risk contribution from patients with discordant

Lab-K+ and ECG-K+, we analyzed the added effect of ECG-K+ on
each outcome. Compared to Lab-K+ alone, the integration of ECG-
K+ with Lab-K+ yielded higher C-indices on all-cause mortality (C-
index 0.634 vs. 0.598, p < 0.001), hospitalization (AUC 0.612 vs.
0.579, p < 0.001), and ED revisits (C-index 0.585 vs. 0.582, p < 0.001)
(Supplementary Fig. 7). In fully-adjusted risk prediction models
incorporating patient demographic, medical history, and other lab
data, the addition of ECG-K+ further improved predictions for
hospitalization but not all-cause mortality or ED revisits.

ECG morphology and risk analysis in patients with discordant
Lab-K+ and ECG-K+

Patients with normal Lab-K+ but abnormal ECG-hyperkalemia (ECG-
K+ ≥5.5mmol/L or false-positive hyperkalemia) had lower preva-
lence of sinus rhythm and higher prevalence of atrial fibrillation/

Fig. 2 Performance of ECG-K+ for detecting mild to severe hypo/hyperkalemia. The ROC curves for varying degrees of hypo- and
hyperkalemia at the academic medical center (A) and community hospital (B). The cut-of-points for each plot were defined previously, which
are the same between the two hospitals. Stratified analyses with the most significant differences are shown in (C).
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flutter, junctional rhythm, premature ventricular complex, supraven-
tricular tachycardia, atrioventricular block, left bundle branch block,
and left ventricular hypertrophy, compared to those with normal
Lab-K+ and ECG-K+ (3.6–5.4mmol/L) (Fig. 7A). The false-positive
hypokalemia group (ECG-K+ ≤3.5mmol/L and 3.5 < Lab-K+ <
5.5mmol/L) also had lower prevalence of sinus rhythm and higher
prevalence of prolonged QT interval, premature ventricular complex,
supraventricular tachycardia, atrioventricular block, and left ventri-
cular hypertrophy, compared to those with normal Lab-K+ and ECG-
K+ (3.6–5.4mmol/L). Figure 7B shows the protective association of
sinus rhythm and detrimental association of other morphologies on
adverse outcomes.

Sensitivity analysis
As shown in Supplementary Fig. 8, model performances were
similar before and after the COVID-19 pandemic except for severe
hypokalemia detection (K+ ≤ 2.5 vs. K+ > 2.5) at the community
hospital due to the small sample size before the pandemic began
(n= 6 vs. n= 3,134). Moreover, risk curves were similar between
included (ECG and lab <1 h apart) and excluded patients (ECG and
lab >1 h apart) for all-cause mortality and ED revisits (Supplemen-
tary Fig. 9) although the risk curve was significantly less

pronounced for hospitalization. This was likely due to these
patients having received treatment in the ED.

Illustrations of patients with discordant Lab-K+ and ECG-K+

Supplementary Figs. 10–13 present ECGs from four patients with
discordant Lab-K+ and ECG-K+. In each case, the AI model
detected multiple concerning features and predicted an abnormal
ECG-K+. These four patients all suffered poor outcomes despite
their initially normal Lab-K+.

DISCUSSION
In this retrospective cohort study, we evaluated the diagnostic
accuracy of AI-ECG for dyskalemias and clinical outcomes in >30,000
patients with both ECG-K+ and Lab-K+ data available. We found that
AI-enabled ECG identified moderate-to-severe dyskalemia with good
performance and faster than the laboratory. Stratified analyses
showed that mild hypokalemia was called more often by ECG in the
elderly with more co-morbidities. The U-shaped relationships
between K+ concentration and adverse outcomes were more
prominent for ECG-K+ than for Lab-K+. The HRs were high, with at
least 4-fold increase in the risk for all-cause mortality among patients
with both hyperkalemic ECG-K+ and Lab-K+. Compared to

Fig. 3 Distributions of selected patients’ characteristics in each ECG-K+ and Lab-K+ group. Bars represent the mean or proportion where
appropriate and corresponding 95% conference intervals, which are adjusted by hospital.
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Fig. 4 The relationship between ECG-K+ and Lab-K+ on adverse outcomes in combined analysis from both hospitals. A The Kaplan–Meier
curve analysis of all-cause mortality in hypo- and hyperkalemia as defined by ECG-K+ and Lab-K+. The hazard ratio (HR) was adjusted by
hospital site; (B) Continuous association of ECG-K+ and Lab-K+ on adverse outcomes. The solid line and dashed line are point estimation and
corresponding 95% conference interval, respectively. The baseline model of combined analysis is adjusted to each hospital site and based on
Cox proportional hazard model or logistic regression as appropriate for each outcome. The multivariable analyses include significant variables
in risk-effect analyses (All-cause mortality: gender, Age, SBP, DBP, HLP, Hb, HCO3, Blood pH, Na, AST, ALT, Alb, CRP, pBNP, and D-dimer;
Hospitalization: gender, age, BMI, DBP, smoke, HLP, STK, HF, WBC, Hb, PLT, HCO3, PH, Na, Cl, tCa, GLU, AST, CK, Alb, CRP, TnI, and D-dimer; ED
revisits in 30 days: gender, DM, CAD, STK, COPD, Hb, and Na).
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hypokalemic Lab-K+, patients with hypokalemic ECG-K+ had
significantly higher risk for all-cause mortality, hospitalization and
ED revisits after full confounder adjustment. Patients with normal
Lab-K+ but abnormal ECG-K+ also exhibited more co-morbidities
and incurred worse outcomes. The addition of ECG-K+ to Lab-K+

generally achieved better outcome prediction.
ECGs are commonly used as point-of-care (POC) tests to

measure the electrical activity of the heart. Certain electrical
changes in the ECG have been associated with dyskalemia, which
can be confirmed by laboratory examination8. However, prompt
recognition of dyskalemia-associated ECG changes prior to
laboratory results is still fraught with great challenge in emergent
situations. With advanced AI techniques9, ECG-based DLMs using
large datasets of annotated ECGs have been developed that learn
useful and subtle features over what is possible with manual
interpretation6,10,22. In this retrospective study, longer ECG signals
(10 s vs. 2.5 s) were found to achieve better diagnostic accuracy

with lower MAE (0.365 vs. 0.531 mmol/L) than other recently-
published retrospective studies6,23. The early or almost simulta-
neous collection of ECG with bloodwork reduced the chance of
Lab-K+ biased by treatment, in stark contrast to other reports in
which ECGs were obtained 1 to 6 h before or after blood tests. As
expected, the complete 12-lead analysis performed better than
any single lead. Of note, the present AUCs of 0.932-0.942 for
detecting Lab-K+ ≥5.5 mmol/L were higher than others using 2 to
4 leads (AUCs 0.853-0.901)10.
In our ED patients, the prevalence of hyperkalemia was

approximately 2%, which is in line with other reports of
hyperkalemia occurring in 2–5% of ED patients5. Despite AUC
greater than 0.93 for hyperkalemia detection, the positive
predictive value is low (10.4–14.7%) in the setting of low
prevalence of hyperkalemia. Although this seemingly high false
positivity rate of AI-ECG for hyperkalemia may cause anxiety and
inconvenience for clinicians and patients, pseudo-positive EKG-K+

Fig. 5 Selected patients’ characteristics in different ECG-K+ and Lab-K+ groups. Bars represent the mean or proportion where appropriate
and corresponding 95% conference intervals, which are adjusted by hospital and Lab-K+ via linear or logistic regression (*p < 0.05; **p < 0.01;
***p < 0.001).
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for hyperkalemia, importantly, predicts adverse outcomes due to
ECG changes directly reflecting underlying cardiac and non-
cardiac disorders. This finding is similar to the “previvor” patients
in a recent study of AI-enabled ECG analysis for left ventricular
systolic dysfunction24, which showed that those individuals with
apparently false-positive AI-ECG findings had a fourfold increased
risk of developing ventricular dysfunction over the ensuing 5
years14.
Both hyperkalemia and hypokalemia are associated with

significant morbidity and mortality. The U-shaped association
between dyskalemic Lab-K+ and mortality has been well
documented in patients with different diseases such as DM,
CKD, AMI, and HF. For example, hyperkalemia, commonly seen in
patients with CKD and HF, is an independent predictor for
mortality19 and also confer a higher risk of cardiovascular events
and hospitalization25. Hyperkalemia per se can reduce heart rate,
cardiac function, and induce severe arrhythmias as well as
circulatory collapse26–29. In this study, we evaluated the outcomes
associated with laboratory dyskalemia in ED patients with different
underlying diseases and acute illnesses. We found that patients
with hyperkalemia had higher mortality, hospitalization, and ED
revisits compared to those with normokalemia. However, patients

with hypokalemia did not have significantly higher mortality
despite higher hospitalization rate and ED revisits. This finding was
similar to those of some prior reports5 but not others3,4. In fact, the
association between laboratory hypokalemia and mortality
remains controversial, depending on the study design and
different studied populations. Hypokalemia directly affects cardiac
function, induces arrhythmias, and indirectly serves as a surrogate
marker for the severity of underlying diseases, such as CHF, AMI,
and even CKD19,28. At the same time, hypokalemia in patients with
acute illnesses (frequently seen in the ED) can also be an
epiphenomenon for stress and enhanced sympathetic activity,
causing acute K+ shift into cells. Our null finding on a hard
outcome (mortality) but positive findings on outcomes subject to
physician and patient interpretation (hospitalization and ED
revisits), suggest that laboratory hypokalemia may often be a
marker for severe stress.
This study investigated the association between abnormal ECG-

K+ and outcomes in ED patients. Overlapping curves for mortality,
hospitalization, and ED revisits were observed for patients with
hyperkalemic ECG-K+ and Lab-K+ but not for those with
hypokalemic ECG-K+ and Lab-K. In contrast to no association for
laboratory hypokalemia, hypokalemic ECG-K+ was associated with

Fig. 6 Risk matrices of different ECG-K+ and Lab-K+ groups on adverse outcomes in combined analysis. The baseline model of combined
analysis is adjusted to each hospital site and based on Cox proportional hazard model or logistic regression as appropriate for each outcome.
The color gradient represents the risk of the corresponding group and non-significant results are colored white. Model 1 includes significant
demographic data (All-cause mortality: gender, Age, SBP, and DBP; Hospitalization: gender, age, BMI, DBP, and smoke; ED revisit in 30 days:
gender). Model 2 includes the variables in model 1 and additional significant disease histories (All-cause mortality: HLP; Hospitalization: HLP,
STK, and HF; ED revisit in 30 days: DM, CAD, STK, and COPD). Model 3 includes the variables in model 2 and additional significant laboratory
tests (All-cause mortality: Hb, HCO3, Blood pH, Na, AST, ALT, Alb, CRP, pBNP, and D-dimer; Hospitalization: WBC, Hb, PLT, HCO3, PH, Na, Cl, tCa,
GLU, AST, CK, Alb, CRP, TnI, and D-dimer; ED revisit in 30 days: Hb and Na).
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a 1.5-fold increased risk for mortality. There are several important
differences between hypokalemic Lab-K+ and ECG-K+. The
prevalence of ECG-K+ of ≤3.5 mmol/L was lower than Lab-K+

≤3.5 mmol/L and the ECG-K+ was relatively less sensitive for
detecting mild to moderate lab-hypokalemia. However, we found
that patients with hypokalemic ECG-K+ were more medically
complex than those with hypokalemic Lab-K+. Our stratified
analysis for detecting mild ECG-K+ hypokalemia showed the
intensity of association became significantly higher in the elderly
with more co-morbidities. Conversely, patients with normal ECG-
K+ but hypokalemic Lab-K+ were less likely to be elderly and in
better physical condition. Typically, less than 50% of hypokalemic
patients exhibit visible ECG changes30, implying the ECG changes
picked up by ECG-K+ mark pathophysiology beyond just an
abnormal electrolyte. These findings suggest that hypokalemic
ECG-K+ may be thought of like a cardiac troponin, a reflection of
myocardial injury which may be caused by a variety of cardiac and
non-cardiac etiologies and portending worse outcomes.
Further evidence of this comes from patients with normal

Lab-K+ but abnormal ECG-K+ (detection error by ECG-K+), who
had older age, more co-morbidities (DM, HTN, CKD, and HF),
and multiple laboratory abnormalities. They clearly demon-
strated adverse outcomes with higher HR for all-cause
mortality (HR 1.40 and 1.49 for hypokalemic and hyperkalemic
ECG-K+, respectively). In contrast, false-negative patients for

ECG-K+ detection (normal ECG-K+ but dyskalemic Lab-K+) had
significantly lower risk for all-cause mortality (HR= 0.87 vs.
HR= 1.46 for hypokalemia and HR= 3.35 vs. HR= 4.20 for
hyperkalemia). Why the ECG-K+ encodes additional prognostic
information beyond the electrolyte value is an interesting
question. Another group has shown that a DLM could be
trained to detect systolic dysfunction using the ECG14. Patients
with hypo- and hyperkalemia were enriched with conditions
such as DM, AMI, CKD and HF compared to patients with
normokalemia. In the training process for our DLM, besides
learning the ECG differences between normal and dyskalemias,
it also learned the subtle ECG differences ascribed to diseases
that contribute to K+ abnormalities. Hence, discrepant ECG-K+

and Lab-K+ could be a useful signal to treating physicians to be
more careful and cast a larger differential when treating those
patients.
There are several clinical applications to using ECG-K+ to

detect dyskalemia. ECG is a simple, cheap, and non-invasive
test to provide specific K+ value with similar timeliness to
point-of-care (POC) tests. The very good accuracy of our ECG-
K+ means a background monitoring system could be imple-
mented in the ED to actively calculate ECG-K+ for every ECG,
not limited to acute myocardial infarction and atrial fibrillation.
It has been reported that patients with severe dyskalemia
may develop sudden fatal cardiac arrhythmias within 1 h of

Fig. 7 ECG morphology analysis of combinations of ECG-K+ and Lab-K+ on adverse outcomes. A Distributions of ECG morphology in each
ECG-K+ and Lab-K+ group. Bars represent the mean or prevalence where appropriate and corresponding 95% conference intervals, which are
adjusted by hospital. B Risk analysis of selected ECG morphologies on adverse outcomes. The hazard ratios and odds ratios were adjusted by
hospital. Red, gray, and blue bars denote significantly positive, non-significant, and negative associations, respectively, with the corresponding
outcomes.
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triage—prior to the laboratory report31–33. The ~40 min lead
time afforded by ECG-K+ means severe dyskalemias can be
prioritized on the differential, potentially life-saving interven-
tions readied at the bedside, and given immediately upon
receipt of a concordant lab result. If the results are discordant,
these are still opportunities for physicians to think more
carefully about the patients’ underlying conditions due to the
higher mortality and other adverse outcomes.
There were some limitations of this study. First, although our

study demonstrated that ECG-K+ was quicker than the central
lab, we did not evaluate early interventions based on the ECG-
K+. Second, our patient population is East Asian and ECG
characteristics may vary by race although the diagnostic
performance of DLM may still be stable, especially within the
same population12. An international study involving different
racial and ethnic groups should be conducted to validate the
performance of ECG-K+ in different settings. Third, patients
may have visited other EDs or expired at other hospitals, which
would not be captured in our EMR. We believe the likelihood of
incomplete capture is low as a previous study of readmissions
in Taiwan using the government’s National Health Insurance
Research Database found only 0.16% of readmissions occurred
at a different hospital34. Fourth, the “black box” of DLM
necessitates our ECG-K+ being more transparent35. Given the
relatively poor discriminative ability of well-known ECG
changes in dyskalemias, further exploration of other relevant
ECG morphologies is needed. Finally, POC-K+ has been used to
detect dyskalemias early. We did not compare the accuracy of
ECG-K+ to POC-K+.
In conclusion, this multi-site retrospective study not only

validated the accuracy of ECG-K+, especially in moderate-to-
severe dyskalemia, but also revealed meaningful differences
between ECG-K+ and Lab-K+. The ECG-K+ holds promise as a
biomarker for adverse ED outcomes. Before clinicians take
advantage of AI-ECG-K to rapidly diagnose and support treatment
decisions for patients with severe dyskalemia, a large-scale,
international trial with ECG-K+-based intervention is needed to
validate its clinical application.

METHOD
Ethical statement
This study was approved by the institutional review board of Tri-Service
General Hospital, Taipei, Taiwan (IRB NO. C202005055). Patients’ consent
was waived because data were collected retrospectively and in
anonymized files and encrypted from the hospital to the data controller.

Study design and population
We performed a black-box pragmatic study in the EDs of two hospitals
within the Tri-Service General Hospital health care system between
May 1, 2019 and December 31, 2020. Data were transmitted in real time
to an integration engine and database server where the ECG-K+ were
calculated and stored without display to clinical providers. The hospital
electronic medical record system was re-designed to maximize data
completeness in this study. Where possible, all relevant data items
were changed to required fields to reduce missing values for this study.
The first site was an academic medical center (NeiHu General Hospital)
with 1,800 beds and accommodating 100,000 ED visits annually before
the COVID-19 pandemic. The second site was a community hospital
(Tingzhou Branch Hospital) with 100 beds and accommodating 15,000
ED visits annually before the pandemic. Because the COVID-19
pandemic was in study period, we conducted a sensitivity analysis to
explore its potential impact on the accuracy of ECG-K+ due to a shift to
fewer low-acuity patients in the ED36.
The algorithm for collecting patient data with ED visits at both

hospitals are shown in Fig. 1A. There were 50,358 and 8223 ED visits to
the participating medical center and community hospital, respectively.
All ED visits started with an initial assessment at the triage station.
Those whose interval between ECG and Lab-K+ measurement was

longer than 1 h were also excluded, due to the possibility of having
received treatments which alter the ECG during the long time interval.
In total, 34,803 ED visits from 26,499 patients to the medical center and
6492 visits from 4747 patients to the community hospital were
recruited for analysis. A sensitivity analysis to compare outcome
predictions between included and excluded patients was conducted.

Measurement of ECG-K+ and Lab-K+

ECGs were obtained when patients were supine, using a standard 10 s, 12-
Lead Philips ECG machine (PH080A). The ECG-K+ ranged from 1.5mmol/L
to 7.5 mmol/L, estimated by ECG12Net, a DLM with 82 convolutional layers
developed previously. This system is configured to visualize the basis for
the AI predictions using class activation mappings and attention
mechanism6. We used complete signals of 10 seconds instead of the
conventional 2.5 s. Nine overlapping sequences of length 1024 were used
to generate predictions and averaged to yield the final prediction as
previously described16,37–39.
Lab-K+ determination was based on central laboratory methods.

Laboratory peudo-dyskalemia were excluded based on evidence of
hemolysis and plasma K+ interference indices. We divided the data into
seven categories based on Lab-K+ concentrations: severe hypokalemia
(≤2.5 mmol/L), moderate hypokalemia (2.5 < Lab-K+ ≤ 3.0 mmol/L), mild
hypokalemia (3.0 < Lab-K+ ≤ 3.5 mmol/L), normal (3.5 < Lab-K+ < 5.5 mmol/
L), mild hyperkalemia (5.5 ≤ Lab-K+ < 6.0 mmol/L), moderate hyperkalemia
(6.0 ≤ Lab-K+ < 6.5 mmol/L), and severe hyperkalemia (≥6.5 mmol/L). The
same classification was applied to ECG-K+.

Study covariates
Study covariates, including demographics, medical co-morbidities, and
laboratory tests, were obtained from the electronic medical record. We
used International Classification of Diseases, Ninth Revision and Tenth
Revision to define diabetes mellitus (DM), hypertension (HTN), hyperlipi-
demia (HLP), chronic kidney disease (CKD), coronary artery disease (CAD),
stroke (STK), heart failure (HF), and chronic obstruction pulmonary disease
(COPD). In addition to Lab-K+, we also collected other laboratory values in
the ED, including complete blood cell count, blood pH, bicarbonate
(HCO3), electrolytes, liver and renal function profiles, glucose (GLU),
creatine kinase (CK), albumin (Alb), C-reactive protein (CRP), procalcitonin
(PCT), troponin I (TnI), NT-pro-B type natriuretic peptide (pBNP), D-dimer,
and urine protein. Missing data were imputed using multiple imputations
in multivariate analysis40. We selected certain important ECG morphology
based on the structured findings statements that are standard on the
Philips system. These included sinus rhythm, atrial fibrillation/flutter,
junctional rhythm, prolonged QT interval, atrial premature complex,
ventricular premature complex, supraventricular tachycardia, atrioventri-
cular block, left bundle branch block, and left ventricular hypertrophy.

Outcome variables
The outcomes of interest included all-cause mortality, hospitalization, and
ED revisit. For mortality, the survival time was calculated with reference to
the date of the ED visit. Patient status (dead/alive) was captured through
the electronic medical record. Moreover, data for alive visits were censored
at the patient’s last known hospital alive encounter to limit bias from
incomplete records. The end of follow-up in this study was January
31, 2021.
For hospitalizations, each ED visit was assigned a disposition at

discharge, including mortality, admission, and discharge home. For ED
revisits, we analyzed the discharged patients for revisits within 30 days.
Patients with ED revisit or re-admission were assigned as positive events.
We calculated the follow-up duration from the original date of ED visit.
Negative samples were censored at the patient’s last known hospital
activity and the end of follow-up was January 31, 2021.

Statistical analysis
This study included two parts, the accuracy analysis and outcome analysis. All
statistical analyses were done by R version 3.4.4. The significance level was
set at p< 0.05. For the accuracy analysis, we primarily focused on the
discrimination between different severities of hypo/hyperkalemia. The ECG-
K+ was used to generate receiver operating characteristic curves and AUC to
evaluate performance. Pearson correlation coefficients (COR) and MAE were
used to demonstrate the relationship between ECG-K+ and Lab-K+.
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Outcome analysis used subjects from both study sites to expand sample
size. We also adjusted for the hospital site as a confounder. We first explored
differences in characteristics of each ECG-K+ group sharing the same Lab-K+.
Linear or logistic regression were used for statistical analyses where
appropriate. Cox proportional hazard model was used to analyze the impact
of ECG-K+, Lab-K+, and study covariates on outcomes of interest. We used the
“pspline” function with a degree of freedom of 2 in the “survival” package to
examine the U-shaped relationship in analyses involving ECG-K+ and Lab-K+.
The other variables were used as linear predictors in a stepwise program based
on significant tests. The significance levels of forward and backward
regressions were set at 0.0001 and 0.001 based on Bonferroni correction,
respectively. We divided these selected variables into three categories
(demographic profile, disease history, and laboratory test) for hierarchical
adjustment. Hazard ratios (HRs) and 95% conference intervals (CIs) were
computed for risk estimation of each group. A series of integration models
were evaluated using the C-index the marker of global performance to explore
the additional contribution of ECG-K+.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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