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Abstract: Background: glycated hemoglobin (HbA1c) provides information on diabetes mellitus 
(DM) management. Electrocardiography (ECG) is a noninvasive test of cardiac activity that has been 
determined to be related to DM and its complications. This study developed a deep learning model 
(DLM) to estimate HbA1c via ECG. Methods: there were 104,823 ECGs with corresponding HbA1c 
or fasting glucose which were utilized to train a DLM for calculating ECG-HbA1c. Next, 1539 cases 
from outpatient departments and health examination centers provided 2190 ECGs for initial 
validation, and another 3293 cases with their first ECGs were employed to analyze its contributions 
to DM management. The primary analysis was used to distinguish patients with and without mild 
to severe DM, and the secondary analysis was to explore the predictive value of ECG-HbA1c for 
future complications, which included all-cause mortality, new-onset chronic kidney disease (CKD), 
and new-onset heart failure (HF). Results: we used a gender/age-matching strategy to train a DLM 
to achieve the best AUCs of 0.8255 with a sensitivity of 71.9% and specificity of 77.7% in a follow-
up cohort with correlation of 0.496 and mean absolute errors of 1.230. The stratified analysis shows 
that DM presented in patients with fewer comorbidities was significantly more likely to be detected 
by ECG-HbA1c. Patients with higher ECG-HbA1c under the same Lab-HbA1c exhibited worse 
physical conditions. Of interest, ECG-HbA1c may contribute to the mortality (gender/age adjusted 
hazard ratio (HR): 1.53, 95% conference interval (CI): 1.08–2.17), new-onset CKD (HR: 1.56, 95% CI: 
1.30–1.87), and new-onset HF (HR: 1.51, 95% CI: 1.13–2.01) independently of Lab-HbA1c. An 
additional impact of ECG-HbA1c on the risk of all-cause mortality (C-index: 0.831 to 0.835, p < 0.05), 
new-onset CKD (C-index: 0.735 to 0.745, p < 0.01), and new-onset HF (C-index: 0.793 to 0.796, p < 
0.05) were observed in full adjustment models. Conclusion: the ECG-HbA1c could be considered as 
a novel biomarker for screening DM and predicting the progression of DM and its complications. 
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1. Introduction 
Diabetes mellitus (DM) is a critical public health issue, as this disease may affect 463 

million people worldwide and will increase by 25% by 2030 and by 51% by 2045 [1]. Early 
detection of DM improves the quality of care, contributing to fewer complications, 
improved survival, and higher quality of life for patients [2]. The World Health 
Organization guidance proposed that a glycated hemoglobin (HbA1c) value of 6.5% is the 
cut-off point for diagnosing DM [3]. Although this invasive blood test may accurately 
identify potential DM without requiring fasting, it is limited by many conditions, causing 
it to be unpopular as a large-scale screening test. At present, there are various risk-scoring 
systems to use a set of noninvasive indicators for screening DM [4–7]. However, for these 
indicators, the area under the receiver operating characteristic curve (AUC) ranged from 
0.72 to 0.81 in external validations [7]. Developing a more accurate noninvasive DM 
screening marker may reduce the burden of 

major complications of DM, including diabetic retinopathy (DR), diabetic 
neuropathy (DN), chronic kidney disease (CKD) and, particularly, cardiovascular 
diseases (CVDs) [8,9], which contribute to approximately 70% of DM-related deaths and 
significantly increase the medical costs of diabetic patients [10]. The American Diabetes 
Association guidelines have therefore recommended that healthcare systems should 
conduct regular assessments and management of complications in diabetic patients [11]. 
HbA1c is not only useful for DM screening, but is also employed to predict DR [12], DN 
[13], and CKD [14]. The increase in CVD risk with rising HbA1c levels starts even without 
DM [15]. However, HbA1c is not a regular laboratory test, which results in a large number 
of missing values [16], leading to difficulties when applying a screening system based on 
electronic medical records. 

Currently, an increasing number of studies describe the use of unstructured data in 
the medical field [17]. For example, coronary artery calcium can be used to enhance the 
prediction of CVD risk [18], and another study extracted additional signals from free-text 
medical records on risk stratification [19]. In the past, many studies have attempted to 
obtain more information about the prognosis or disease diagnosis from 
electrocardiograms (ECG), and have successively helped to clarify the relationship 
between the ECG and the prognosis, but this method has not become popular because it 
is difficult to judge the waveform and requires other mathematical analyses. The current 
revolution in artificial intelligence (AI) based on deep learning models (DLMs) is a data-
driven technique to learn useful features in an automated fashion [20], which is powerful 
for detecting myocardial infarction [21], digoxin toxicity [22], arrhythmia [23,24], 
hyperkalemia [25,26], left ventricular dysfunction [27,28], mitral regurgitation [29], aortic 
stenosis [30], and hypoglycemic events [31]. Therefore, we attempted to employ DLM to 
apply ECG to DM management, which may combine unstructured data to identify 
additional information. 

DLM has also been shown to extract features that are unrecognizable to humans, such 
as sex and age [32]. Interestingly, patients with higher estimated ECG age, even with the 
same chronological age, usually have characteristics of hypertension, CAD, or a low 
ejection fraction [32]. We hypothesize that ECG may represent a novel biomarker for 
screening DM and predicting its progression. DLM may extract underlying factors when 
using ECG to estimate a DM progression index, such as estimating age via ECG. Because 
the HbA1c may be the most important factor in DM screening [3] and progression [33], 
we investigated the feasibility of estimating HbA1c by ECG. This study aimed to train a 
series of DLMs using ECG to predict HbA1c, and the ECG based HbA1c (ECG-HbA1c) 
was decided by the DLM performance comparison. We quantified its performance on DM 
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screening, and the underlying characteristic differences in different ECG-HbA1c under 
the same laboratory-based HbA1c were also analyzed. Finally, we also attempted to use 
ECG-HbA1c to improve the predictive accuracy of all-cause mortality, new-onset CKD, 
and new-onset heart failure (HF) to validate the utility of this novel biomarker. 

2. Materials and Methods 
2.1. Data Source and Population 

The electronic medical records of our hospital included digital ECG signals, and the 
records from 1 January 2012 to 31 December 2019 were available. ECGs were collected 
using a Philips 12-lead ECG machine (PH080A) with a 500-Hz sampling frequency and 10 
s in each lead. The quantitative measurements and findings within the final ECG clinical 
reports were extracted to identify 31 diagnostic pattern classes and 8 continuous ECG 
measurements. The 8 ECG measurements included heart rate, PR interval, QRS duration, 
QT interval, correct QT interval, P wave axis, RS wave axis, and T wave axis. Data for 
these variables were 93–100% complete, and missing values were imputed using multiple 
imputations [34]. Patterns included abnormal T wave, atrial fibrillation, atrial flutter, atrial 
premature complex, complete AV block, complete left bundle branch block, complete 
right bundle branch block, first degree AV block, incomplete left bundle branch block, 
incomplete right bundle branch block, ischemia/infarction, junctional rhythm, left anterior 
fascicular block, left atrial enlargement, left axis deviation, left posterior fascicular block, 
left ventricular hypertrophy, low QRS voltage, pacemaker rhythm, prolonged QT 
interval, right atrial enlargement, right ventricular hypertrophy, second degree AV block, 
sinus bradycardia, sinus pause, sinus rhythm, sinus tachycardia, supraventricular 
tachycardia, ventricular premature complex, ventricular tachycardia, and Wolff–
Parkinson–White syndrome. The 31 clinical diagnosis patterns were parsed from the 
structured findings statements on the basis of the key phrases that are standard within the 
Philips system. These features were used to train an extreme gradient boosting (XGB) 
model and elastic net, and the DLM was trained via raw ECG traces. 

In this study, we used the HbA1c value and measured the method of ion-exchange 
through high performance liquid chromatography (HPLC) via running on the instrument 
of HLC-723G11. The ion-exchange HPLC method is certificated by the National 
glycohemoglobin standardization program (NGSP) as the HbA1c test with traceability to 
the Diabetes control and complications trial (DCCT) reference assay. The other laboratory-
testing histories were collected from our electronic medical records. The diagnosis of DM 
was made by the following criteria [35]: (1) 6.5% or higher on two separate HbA1c tests; 
(2) 126 mg/dL or higher on two separate GLU tests; (3) 200 mg/dL or higher after two 
hours in oral glucose tolerance test. Patients meeting any of the above criteria before the 
date of ECG were identified. Moreover, patients with a HbA1c of ≥8.0% were defined as 
a severe DM at the date of ECG. In this study, we classified patients with prediabetes as a 
non-DM group in following analyses, which were defined with the following criteria: (1) 
5.7% or higher on two separate HbA1c tests; (2) 100 mg/dL or higher on two separate GLU 
tests; (3) 140 mg/dL or higher after two hours in an oral glucose tolerance test. 

Figure 1 shows the generation of study cohorts. There were 23,195 patients visiting 
the outpatient department (OPD) in the study period with more than 1 ECG and HbA1c 
pair within 30 days. Among them, there were 5084 patients visiting the OPD earlier than 
1 January 2015, and 2098 patients visiting the OPD from 1 January 2015 to 31 December 
2015. Only patients that had an ECG and >1 HbA1c measurement within 3 days were 
included, leading to the remaining 3293 patients and 1539 patients before 1 January 2015 
and between 1 January 2015 and 31 December 2015, respectively. There were 2190 ECGs 
from 1539 people in the validation cohort for initially validating the DLMs. As for the 3293 
patients, only the earliest ECG was applied to generate a follow-up cohort with 3293 
ECGs, which were used for the accuracy test of DLM and the evaluation of the meaning 
of prediction error. In the validation cohort, 752 (34.3%) patients had no history of DM, 
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454 (20.7%) patients had the history of prediabetes with the duration of 1.19 ± 1.83 years, 
and 984 (44.9%) patients had the history of DM with the duration of 4.84 ± 3.83 years, 
while the follow-up cohort consisted of 816 (24.8%) patients without DM, 528 (16.0%) 
patients with the history of prediabetes and the duration of 1.75 ± 2.36 years, and 1949 
(59.2%) patients with the history of DM and the duration of 4.69 ± 3.77 years. Based on 
this sample size for following the outcomes with hypothetical incidences of 1%/5%, the 
statistical powers achieved 65.6%/>99.9% using the following settings: a significance level 
of 0.05, a ratio of two groups was equal to 1, and a minimum detectable relative risk of 2. 
We selected the earliest data as the follow-up cohort for maximizing the following time of 
DM related outcomes. There was no overlap among the cohorts. 

 
Figure 1. The summary of study design in this study. The process of development, validation, and follow-up cohorts with 
each electrocardiogram (ECG) labeling of HbA1c was indicated. The patients in validation and follow-up cohorts were 
totally different from development cohort. The development cohort included three subsets (subset-1: outpatient 
department samples; subset-2: full samples; subset-3: samples with corresponding HbA1c). Abbreviations: DM, diabetes 
mellitus. 

We used a series of methods to collect more samples for developing DLMs. The 
remaining 16,733 patients first visited after 1 January 2016 had 27,855 ECGs with 
corresponding HbA1c in the OPD. For further increasing the data volume, we included 
ECGs without corresponding HbA1c but with corresponding fasting glucose (GLU) 
within 3 days. A previous study developed an equation for estimating average GLU as 
follows: 28.7 × HbA1C—46.7 [36], and we used the inverse function to calculate the 
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estimated HbA1c. This method increased to 1261 ECGs with corresponding GLU and 
without HbA1c from 16,733 patients with more than 1 ECG and GLU pair. Further, 27,395 
ECGs with estimated HbA1c from the other 22,533 patients in study period were collected. 
Therefore, a total of 56,511 ECGs from 46,448 patients were used to construct subset-1 with 
only OPD data included. To further augment the development samples, 10,737 patients 
who visited the inpatient department (IPD) were included in the study period, with 36,250 
ECGs and corresponding HbA1c within 30 days or estimated HbA1c within 3 days. There 
were 12,062 IPD ECGs from the 46,448 patients in subset-1 using the same criteria, and 
there were 104,823 ECGs from 57,185 patients in the subset-2. We further excluded the 
ECGs without corresponding HbA1c to construct subset-3 with the remaining 57,539 
ECGs from 22,695 patients. We defined the subset-2 as the major development cohort. 
There were 32,298 (30.8%) patients without DM, 22,695 (21.3%) patients with the history 
of prediabetes and the duration of 0.88 ± 1.91 years, and 50,176 (47.9%) patients with 
history of DM and the duration of 4.33 ± 4.07 years. 

2.2. Observational Variables 
In addition to glucose profile, we also collected the relevant blood laboratory values 

in the OPD, including electrolytes, liver and renal function profiles, albumin (Alb), c-
reactive protein (CRP), complete blood cell count, and lipid profiles. The nearest 
laboratory test was obtained within 3 days before and after enrollment. The missing data 
were imputed using multiple imputations in multivariable analysis [34]. 

The complications of this study in the follow-up cohort were all-cause mortality, 
new-onset CKD, and new-onset HF. For the mortality data, the survival time was 
calculated with reference to the date of ECG. Patient status (dead/alive) was defined 
through electronic medical records, which were updated by each hospital activity. 
Moreover, data for alive visits were censored at the patient’s last known hospital alive 
encounter to limit bias from incomplete records. The end of follow-up in this study was 
31 December 2019. Patients without revisits to our hospital were excluded, and there were 
3288 (99.8%) at risk samples for mortality analysis. 

The new-onset CKD event was defined as at least 2 records of estimated glomerular 
filtration rate (eGFR) ≤60 mL/min or markers of kidney damage (albumin to creatinine 
ratio ≥30 mg/g or positive urine strip test) after the index date. Patients meeting any of the 
above criteria before the date of ECG were excluded and defined as having CKD history, 
and the number of at risk patients was 2426. The HF was defined by the quantitative 
ejection fraction recorded at the acquisition in the Philips image system®. The ejection 
fraction is routinely acquired by experienced cardiologist or technicians using a 
standardized method. An ejection fraction of ≤35% was defined as HF in this study, and 
the history of HF and at risk patients followed the above rules. There were 3031 at risk 
patients to follow up on the new-onset HF. 

The other disease histories were based on the corresponding International 
Classification of Diseases, Ninth Revision and Tenth Revision (ICD-9 and ICD-10, 
respectively) as follows: hypertension (HTN, ICD-9 codes 401.x to 404.x and ICD-10 codes 
I10.x to I16.x), hyperlipidemia (HLP, ICD-9 codes 272.x and ICD-10 codes E78.x), stroke 
(STK, ICD-9 codes 430.x to 438.x and ICD-10 codes I60.x to I63.x), coronary artery disease 
(CAD, ICD-9 codes 410.x to 414.x, and 429.2, and ICD-10 codes I20.x to I25.x), atrial 
fibrillation (AF, ICD-9 codes 427.31 and ICD-10 codes I48.x), and chronic obstructive 
pulmonary disease (COPD, ICD-9 codes 490.x to 496.x and ICD-10 codes J44.9). 

2.3. Implementation of the Deep Learning Model 
The DLM architecture with an attention mechanism was used to estimate HbA1c, 

which was based on our previous study [21,22,26,37]. Figure 2A shows the architecture of 
our DLM. Each ECG was recorded as a standard 12 leads consisting of 5000 number 
sequences, and a 5000 × 12 matrix was generated based on these sequences. An input 
format of this architecture is a 4096 × 12 matrix. We randomly cropped a length of 4096 
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sequences as input during the training process. For the inference stage, 2 overlapping 
lengths of 4096 sequences at the start and the end were used to generate predictions that 
were averaged as the final prediction. 

 
Figure 2. The implementation of our deep learning model. (A) The model architectures of the deep learning model for 
analyzing ECG. (B) Four training strategies were based on different sampling processes. The matching strategy was to 
split the sample to multiple blocks based on different conditions. The batch samples were sampled from each block with 
the same probability. 
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We defined a “residual module” as a neural combination with a constant k, as 
follows: (1) a 1 × 1 convolution layer with k/4 filters to reduce the dimensions of the data, 
(2) a batch normalization layer to normalization, (3) a rectified linear unit (ReLU) layer for 
non-linearization, (4) a 3 × 1 convolution layer with k/4 filters to extract features, (5) a batch 
normalization layer for normalization, (6) a ReLU layer for non-linearization, and (6) a 3 
× 1 convolution layer with 4K filters to extract features, (7) a 1 × 1 convolution layer with 
k filters to restore feature shape, (8) a batch normalization layer for normalization, (9) a 
ReLU layer for non-linearization, and (10) a squeeze-and-excitation (SE) module for 
weighting features. The SE module was defined as follows: (1) an average global pooling 
layer, (2) a fully-connected layer with k/r neurons, and (3) a fully-connected layer with k 
neurons. The constant r was set at 8 in all experiments. The residual module was ended 
by a shortcut connection, resulting in direct connections of each layer with all subsequent 
layers. 

The residual module cannot be concatenated when the size of feature maps changes. 
Thus, a “pool module” was used to concatenate each residual module for down-sampling 
in our architecture. This module included similar concatenated layers with residual 
modules, but the stride of the 3 × 1 convolution layer was changed to 2 × 1. An average 
pooling layer with a 2 × 1 kernel size and stride was used for down-sampling. We used 
the concatenated function to integrate them. 

The input data were passed through a batch normalization layer, followed by a 11 × 
1 convolution layer with 2 × 1 stride and 16 filters, another batch normalization layer, a 
ReLU layer, and a pool module. Next, the data were passed through a series of residual 
modules and pool modules, resulting in a 32 × 12 × 1024 array. A global pooling layer was 
followed by the last residual module. We divided it into 12 lead-specific feature maps 
with 1024 features. These feature maps were passed through a fully-connected layer with 
1 neuron to generate the lead specific predictions. We designed an attention mechanism 
based on a hierarchical attention network to concatenate these blocks, increasing the 
interpretive power of DLM. The attention module was comprised of a fully connected 
layer with 8 neurons, followed by a batch normalization layer, a ReLU layer, and a fully-
connected layer with 1 neuron to generate the weights of each lead. Attention scores were 
calculated for each ECG lead and then integrated for standardization by the last linear 
output layer. The standardized attention scores were used to weight the 12 ECG lead 
outputs by simple multiplication. The 12 weighted outputs were summed and passed 
through a predicted module to give the final prediction value. 

To increase the nonlinear adaptability and reduce monotonously linear predicted 
functions of outputs, we used the category-wise label encoding technology to code the 
HbA1c concentration. The range of HbA1c concentration was defined from 4.0% to 10.0%. 
We designed a 20 sigmoid output by an interval of 0.3. For example, the minimal HbA1c 
concentration of less than 4.0% is coded as (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 
the HbA1c concentration of 6.5% is coded as (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0), the HbA1c concentration of 8.0% is coded as (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 
0, 0), and so on. The loss function is cross-entropy in these sigmoid outputs, and our 
network was trained to minimize the cross entropy loss. The final prediction was the sum 
of these values multiplied by 0.3 plus 4.0. For example, a prediction vector given by DLM 
is (1, 1, 1, 1, 1, 1, 1, 1, 0.9, 0.8, 0.7, 0, 0, 0, 0, 0, 0, 0, 0), which corresponds to an ECG-HbA1c 
concentration of 7.12%. 

An oversampling process was implemented to ensure that rare cases with extreme 
HbA1c values were adequately recognized, which was based on weights computed on 
the prevalence of 20 equidistant intervals in the development cohort. In our study, the 
distribution of HbA1c was not uniform, therefore the ECGs with rare values were copies 
of existing samples at random to increase the number of observations. This ideally gives 
us a sufficient number of samples to play with [38,39]. However, we explored multiple 
oversampling strategies to maximize the model’s performance because ECG was related 
to gender and age [32]. Figure 2B shows the summary of four training strategies. The first 
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strategy was the oversampling process based on the reciprocals of prevalence of 20 
equidistant intervals in each batch (no match). The second strategy was to ensure a 
balanced gender distribution in each batch (gender-match). The third strategy was to 
additionally consider the weight of age, which was also computed on the prevalence of 
20 equidistant intervals in the development cohort (age-match). The fourth strategy was 
matching both gender and age (gender/age-match). We compared the matching effects of 
the 4 trained DLMs using a full-scale development cohort. A sensitivity analysis using 
only ECGs from OPD (subset-1) and ECGs with corresponding HbA1c (subset-3) was 
conducted. 

We trained these DLMs with a 32 batch size and used an initial learning rate of 0.001 
using an Adam optimizer with standard parameters (β1 = 0.9 and β2 = 0.999). The learning 
rate was decayed by a factor of 10 each time the loss of the validation cohort plateaued 
after an epoch. To prevent the networks from overfitting, early stopping was performed 
by saving the network after every epoch and choosing the saved DLMs with the lowest 
loss on the validation cohort. The only regularization method for avoiding overfitting was 
the L2 regularization with a coefficient of 10−4 in this study. 

Abbreviations: OPD, outpatient department; HEC, health examination center; IPD, 
in-patient department; EMR, emergency room; BMI, body mass index; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; DM, diabetes mellitus; HTN, hypertension; HLP, 
hyperlipidemia; CKD, chronic kidney disease; STK, stroke, CAD, coronary artery disease; 
HF, heart failure; AF, atrial fibrillation; COPD, chronic obstructive pulmonary disease; 
HbA1c, glycated hemoglobin; GLU, glucose AC; eGFR, estimated glomerular filtration 
rate; BUN, blood urea nitrogen; Na, sodium; K, potassium; Cl, chloride; Ca, total calcium; 
Mg, magnesium; Alb, albumin; CRP, C-reactive protein; WBC, white blood cell count; 
PLT, platelet; Hb: hemoglobin; AST, aspartate aminotransferase; ALT, alanine 
aminotransferase; TG, triglyceride; TC, total cholesterol; LDL, low density lipoprotein 
cholesterol; HDL, high density lipoprotein cholesterol. 

2.4. Statistical Analysis and Model Performance Assessment 
Patient characteristics are presented as means and standard deviations, numbers of 

patients, or percentages where appropriate and were compared using either analysis of 
variance, Student’s t-test, or Chi-square test, as appropriate. All statistical analyses were 
completed in R version 3.4.4. The significance level was set as p < 0.05. We provided a 
series of DLMs with training via different strategies, and the optimal DLM was selected 
based on the highest AUC for detecting DM in the validation cohort. Moreover, the results 
of XGB model and elastic net were presented, which provided corresponding variable 
important rankings to explore the relationship between explainable features and HbA1c. 

The primary analysis was to explore the diagnostic value on DM and severe DM in 
the follow-up cohort. The AUC, sensitivity (recall), specificity, precision, and F-measure 
are presented. Moreover, confusion scatter plots with mean absolute error (MAE) were 
used to compare actual HbA1c and ECG-HbA1c. The stratified analysis was also 
conducted. The secondary analysis was to explain the estimation residual between 
laboratory-based and ECG-based HbA1c. We explored the difference in characteristics in 
each ECG-HbA1c group sharing the same Lab-HbA1c. Linear regression or logistic 
regression was used for statistical testing where appropriate. Finally, we used univariable 
and multivariable Cox proportional hazard models to analyze the relationship between 
baseline characteristics and outcomes of interest. Hazard ratios (HRs) and 95% conference 
intervals (95% CIs) were used for comparison. A series of integration models were 
evaluated using the C-index as global performance to explore the additional contributions 
of ECG-HbA1c. 
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3. Results 
Table 1 shows patient characteristics in the development, validation, and follow-up 

cohorts. Almost all characteristics were different among these three cohorts, which were 
grouped by date. This might reduce the generalizability of DLM if it was learned via 
spurious relationships. The number of mortalities was 61 (1.9%) during a median follow-
up period of 4.5 years, and the incidence of new-onset CKD and HF was 8.3% (201) and 
2.8% (86), respectively. 

Table 1. Patient characteristics and laboratory results in development, validation, and follow-up cohorts. 

 
Development Cohort 
(N/n = 57,185/104,823) 

Validation Cohort 
(N/n = 1539/2190) 

Follow-Up Cohort 
(N/n = 3293/3293) 

p-Value 

Location    <0.001 
OPD/HEC 56,511 (53.9%) 2190 (100.0%) 3293 (100.0%)  
IPD/EMR 48,312 (46.1%) 0 (0.0%) 0 (0.0%)  

Gender (Male) 59182 (56.5%) 1124 (51.3%) 1746 (53.0%) <0.001 
Age (years) 60.9 ± 17.1 56.0 ± 14.8 58.8 ± 15.0 <0.001 
BMI (kg/m2) 25.2 ± 6.0 24.8 ± 3.9 25.5 ± 4.2 <0.001 
SBP (mmHg) 136.0 ± 27.9 130.3 ± 25.0 134.4 ± 26.7 <0.001 
DBP (mmHg) 79.3 ± 17.1 79.3 ± 14.8 79.5 ± 15.4 0.752 

Disease history     
DM 50,176 (47.9%) 984 (44.9%) 1949 (59.2%) <0.001 

HTN 42,116 (40.2%) 846 (38.6%) 1773 (53.8%) <0.001 
HLP 41,117 (39.2%) 880 (40.2%) 1767 (53.7%) <0.001 
CKD 34,246 (32.7%) 438 (20.0%) 862 (26.2%) <0.001 
STK 13,893 (13.3%) 216 (9.9%) 430 (13.1%) <0.001 
CAD 24,474 (23.3%) 508 (23.2%) 1059 (32.2%) <0.001 
HF 6693 (6.4%) 119 (5.4%) 256 (7.8%) 0.001 
AF 4983 (4.8%) 70 (3.2%) 125 (3.8%) <0.001 

COPD 13,555 (12.9%) 239 (10.9%) 595 (18.1%) <0.001 
Laboratory test     

HbA1c (%) 7.0 ± 1.8 6.3 ± 1.4 6.6 ± 1.6 <0.001 
GLU (gm/dl) 119.1 ± 49.3 115.5 ± 43.9 123.2 ± 49.1 <0.001 

eGFR (mL/min) 81.6 ± 36.2 89.2 ± 27.1 84.5 ± 30.3 <0.001 
BUN (mg/dL) 22.1 ± 19.6 16.5 ± 9.7 18.8 ± 13.7 <0.001 
Na (mmol/L) 137.8 ± 4.8 139.0 ± 3.8 138.5 ± 4.2 <0.001 
K (mmol/L) 4.0 ± 0.5 4.1 ± 0.4 4.1 ± 0.5 <0.001 
Cl (mEq/L) 103.3 ± 5.0 103.8 ± 3.7 103.5 ± 4.4 <0.001 
Ca (mg/dL) 9.0 ± 0.7 9.2 ± 0.5 9.1 ± 0.6 <0.001 
Mg (meq/L) 2.1 ± 0.3 2.1 ± 0.2 2.1 ± 0.3 0.122 
Alb (g/dl) 3.9 ± 0.7 4.2 ± 0.5 4.1 ± 0.5 <0.001 

CRP (mg/L) 2.8 ± 5.5 1.4 ± 3.3 1.8 ± 3.9 <0.001 
WBC (103/uL) 8.3 ± 5.1 7.0 ± 4.7 7.4 ± 3.2 <0.001 
PLT (103/uL) 235.4 ± 81.3 237.3 ± 68.1 234.9 ± 71.7 0.504 
Hb (gm/dl) 13.1 ± 2.3 13.6 ± 1.9 13.5 ± 2.1 <0.001 
AST (U/L) 35.9 ± 119.8 22.3 ± 15.8 25.0 ± 21.8 <0.001 
ALT (U/L) 31.8 ± 103.2 22.5 ± 17.0 25.0 ± 25.6 <0.001 
TG (gm/dl) 136.6 ± 131.0 137.5 ± 104.7 145.7 ± 157.9 <0.001 
TC (gm/dl) 172.0 ± 48.8 179.4 ± 38.3 178.5 ± 41.7 <0.001 

LDL (gm/dl) 102.9 ± 37.5 108.2 ± 33.4 107.4 ± 34.9 <0.001 
HDL (gm/dl) 46.7 ± 15.2 49.4 ± 13.6 48.5 ± 14.0 <0.001 

N = number of patient; n = number of ECG. 
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We next explored a suitable DLM training strategy for subsequent analysis. Figure 
3A shows that the HbA1c predicted by DLM with gender/age-match provided the highest 
AUC of 0.855 (95% CI: 0.840–0.871) for detecting DM, which was the most highly 
correlated with laboratory-based HbA1c (r = 0.557, 95% CI: 0.531–0.582). Figure 3B shows 
the performances of the best DLM, XGB model, and elastic net for detecting DM and 
severe DM in the follow-up cohort. The AUCs of DLM with gender/age-match, XGB 
model, and elastic net on DM was 0.8255, 0.7573, and 0.7226 in the follow-up cohort, 
respectively. Our ECG-HbA1c shows a sensitivity of 71.9% and specificity of 77.7% in the 
detection of DM. For patients with DM, we observed an AUC of 0.6550 using DLM for 
detecting severe DM in the follow-up cohort, which was better than the XGB model 
(0.5961) and elastic net (0.5884). Therefore, the ECG-HbA1c was defined as the estimation 
result of DLM with a gender/age-match. The scatter plot with Lab-HbA1c versus ECG-
HbA1c is presented in Figure 3C. The mean absolute errors of Lab-HbA1c and ECG-
HbA1c in the follow-up cohort was 1.238 with correlations of 0.493. Figure 3D shows the 
most important role of heart rate in the prediction of HbA1c in the XGB model, while a 
corrected QT interval, QT interval, followed by an RS wave axis played vital roles in the 
elastic net. 
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Figure 3. Analysis of deep learning model and traditional machine learning models. (A) The performance comparison of 
deep learning model (DLM) trained by 6 different weighting strategies in the validation cohort. The DLM (…) were made 
by predictions of deep learning models using different strategies. The XGB model and Elastic net demonstrated the 
corresponding predictions. The gender/age-matching strategy provides the highest correlation between estimated HbA1c 
and actual HbA1c. (B) Performance comparison for detecting DM and severe DM in the follow-up cohort. ROC curves 
were created from predictions of the deep learning model trained using a gender/age-matching strategy. Moreover, the 
performance of XGB model and elastic net were also presented. (C) Scatter plot between DLM predictions and actual 
HbA1c in the follow-up cohort. The x-axis indicates the true HbA1c from laboratory tests. The y-axis presents the predicted 
HbA1c from the deep learning model trained using a gender/age-matching strategy. Red points represent the highest 
density, followed by yellow, green, light blue, and dark blue. (D) Related feature importance ranking in XGB model 
(information gain) and elastic net (standard coefficient). There are only the top 10 important variables in each model, and 
the blue color demonstrates the negative relationship between variables and actual HbA1c. 

Figure 4 shows that DLM performance was strong across all conditions to detect DM. 
The strengths of association, albeit widely inconsistent in different conditions for DM 
detection, were much higher for female and younger patients with fewer co-morbidities 
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(HTN, HLP, and STK) and low BMI. The DLM exhibits higher AUCs with higher 
specificities in health patients, which indicated that patients with complex co-morbidities 
were more likely to be recognized as DM by ECG-HbA1c. This implied that patients with 
normal ECG-HbA1c but abnormal Lab-HbA1c (false negative) were young and healthy, 
while patients with abnormal ECG-HbA1c but normal Lab-HbA1c (false positive) were 
elderly with co-morbidities. Intriguingly, these patient characteristics had no impacts on 
the performance difference of severe DM detection. 

 
Figure 4. Stratified analysis for detecting DM and severe DM in the follow-up cohort. The DLM’s sensitivity and specificity 
to detect DM and severe DM are tabulated across a series of stratified analyses. The p-value was the significant test of 
strength of association, and a significance level was 0.0045 based on the Bonferroni correction. 

Figure 5A shows that the higher ECG-HbA1c groups exhibit higher BMI, higher 
prevalence of CKD/HF/HTN, worse kidney function (eGFR and blood urea nitrogen), 
lower Alb, and lower high-density lipoprotein cholesterol compared with the lower ECG-
HbA1c groups, which are the risk factors for DM-related complications. Figure 5B shows 
outcome analysis of both DM/Lab-HbA1c and ECG-HbA1c. The false positive detection 
by DLM (ECG-HbA1c ≥ 6.5%) shows higher HRs on three outcomes of interest compared 
to the true negative (ECG-HbA1c < 6.5%) in patients without DM. Moreover, the false 
negative group (ECG-HbA1c < 6.5%) presented the lower risk of these outcomes 
compared to true positives (ECG-HbA1c ≥ 6.5%) in patients with DM. The dose response 
effects of ECG-HbA1c were significant on mortality (HR: 1.53, 95% CI: 1.08–2.17), new-
onset CKD (HR: 1.56, 95% CI: 1.30–1.87), and new-onset HF (HR: 1.51, 95% CI: 1.13–2.01) 
after gender and age adjustments, which was higher than the effects of Lab-HbA1c (HR 
of mortality: 0.95, 95% CI: 0.73–1.24; HR of new-onset CKD: 1.24, 95% CI: 1.07–1.43; HR of 
new-onset HF: 1.17, 95% CI: 0.93–1.47). All the results demonstrated the beneficial role of 
ECG-HbA1c on the prediction of the cardiovascular disease outcomes compared to Lab-
HbA1c. 
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Figure 5. Characteristics and risk analysis in patients with actual HbA1c and ECG-HbA1c. (A) Patient characteristics in 
different ECG-HbA1c groups and real HbA1c groups. Bars represent the mean or proportion where appropriate and 
corresponding 95% conference intervals, which are adjusted by real HbA1c in each group via linear or logistic regression. 
Significant tests are based on the trend test (*: p for trend < 0.05; **: p for trend <0.01; ***: p for trend <0.001), and the sign 
represents the correlation direction. (B) Risk matrixes of ECG-HbA1c and HbA1c groups on DM related complications. 
The hazard ratios (HRs) are based on a Cox proportional hazard model before and after adjusting by gender and age. The 
color gradient represents the risk of corresponding group. 

Figure 6A shows additive effects of ECG-HbA1c. In the mortality analysis, the ECG-
HbA1c provided a C-index of 0.665 (95% CI: 0.600–0.730) which was significantly higher 
than Lab-HbA1c (C-index = 0.604, 95% CI: 0.536–0.673). After full adjustments, ECG-
HbA1c provided significantly more information on mortality (C-index = 0.835 in model 3 
+ ECG-HbA1c) compared to Lab-HbA1c (C-index = 0.831 in model 3 + HbA1c), which is 
similar on the prediction of new-onset CKD. For the new-onset HF, the integration of Lab-
HbA1c and ECG-HbA1c provided a higher C-index (0.665) compared to the Lab-HbA1c 
alone (0.620). In the full adjustment model including Lab-HbA1c, the integration of ECG-
HbA1c significantly improved the model performance (C-index: 0.793 to 0.796, p < 0.05). 
Figure 6B shows the HRs of the full adjustment model with Lab-HbA1c and ECG- HbA1c 
on these three outcomes. The ECG-HbA1c independently provided risk predictions (HR 
of mortality: 1.23, 95% CI: 1.04–1.45; HR of new-onset CKD: 1.29, 95% CI: 1.18–1.41; HR of 
new-onset HF: 1.20, 95% CI: 1.03–1.39) in additional to a series of risk factors. Although 
the HRs of Lab-HbA1c were significant on the prediction of new-onset CKD (HR: 1.08, 
95% CI: 1.01–1.16) and new-onset HF (HR: 1.17, 95% CI: 1.06–1.30), the effect of Lab-
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HbA1c was less than ECG-HbA1c. These results highlighted the strength of ECG-HbA1c 
to provide information on the unmeasured heart state. 

 
Figure 6. Additional contributions of ECG-HbA1c on DM related complications. (A) A Cox proportional hazard model 
and C-index are used as the performance assessment for a series of models. The model 1 includes significant demographic 
data, the model 2 includes variables in model 1 and additional significant disease histories, and the model 3 includes 
variables in model 2 and additional significant laboratory tests. Abbreviations: *, p < 0.05; **, p < 0.01; ***, p < 0.001. (B) The 
multivariable analyses of the models with best performance (model 3 + HbA1c + ECG-HbA1c) described above. The risk 
score can be calculated based on these coefficients to provide the corresponding C-index as above. 

4. Discussions 
Our ECG-HbA1c provides an AUC of 0.8255 on DM screening in follow-up cohorts. 

The underlying characteristic differences in different ECG-HbA1c under the same Lab-
HbA1c were analyzed, which revealed patients with higher ECG-HbA1c had more risk 
factors for DM progression. ECG-HbA1c provides additional information, although we 
had already adjusted for full baseline characteristics. We believe that ECG furnishes more 
information on latent cardiovascular factors compared to Lab-HbA1c, especially in 
unmeasured factors. 
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Several ECG manifestations have been proposed as a means of determining diabetic 
disease status. Diabetic rats exhibited prolonged ventricular depolarization time, 
decreased conduction velocity, and increased arrhythmia during reperfusion, which are 
reflected in ECG [40]. In human studies, increased resting heart rate [41] and longer atrial 
conduction time [42] were found to be correlated with DM. Long-term impaired fasting 
glucose was also observed to lead to accelerated RHR, ST-T changes, and arrhythmias in 
ECG [43]. Our data demonstrates that heart rate, corrected QT interval, QT interval, and 
RS wave axis were the most important ECG changes in the prediction of Lab-HbA1c 
during big data analysis. However, the detection of DM by ECG is difficult. DLM has been 
found to extract features unrecognizable to humans, such as obtaining cardiovascular risk 
factors from the retinal fundus [44], contributing to better performance than that of XGB 
models and elastic nets. 

The advantage of DLM compared to traditional methods is to extract useful features 
automatically [20]. Recently, a study developed a DLM for screening DM via ECG with 
AUCs of 0.777 in an OPD experiment [45]. Through the larger database and augmentation 
from GLU, our DLM achieved an AUC of 0.8255. Moreover, both previous [45] and our 
own studies show that ECG based DM detection is more accurate for people with normal 
ranges of weight. The MAE of our noninvasive system (1.238) even approximately 
reached the 13 commercially available point-of-care HbA1c test devices ranging from −0.9 
to 0.7 [46]. Importantly, our study further explores the meaning of predicting error, and 
finally points out the poor conditions in patients with higher ECG-HbA1c. ECG-HbA1c 
may be used to predict DM-related progression, which is critical in the identification of 
high-risk groups. 

Although Lab-HbA1c may be the most important factor for prediction of DM 
progression [33], large amounts of missing data might preclude analysis by retrospective 
electronic medical records [16]. For example, cholesterol values were available for fewer 
than 30% of patients due to fewer measurements [47], necessitating a substitute, such as 
BMI, for the assessment of cardiovascular health [48,49]. Moreover, Lab-HbA1c might not 
be a perfect index for evaluating DM, especially in aged patients without DM [50,51]. Age-
dependent HbA1c reference intervals for the diagnosis of DM have been proposed [52]. 
Our data demonstrated that ECG-HbA1c might be feasible when missing Lab-HbA1c 
values, and even has a higher predictive ability in regard to mortality, new-onset CKD 
and HF compared to Lab-HbA1c. Moreover, our data demonstrates that patients with 
higher ECG-HbA1c under the same laboratory-based HbA1c present increased risk 
factors for DM progression, indicating that ECG-HbA1c provides additional predictive 
information, even when the Lab-HbA1c is available. Similarly, it had been suggested that 
patients with higher ECG age under the same chronological age usually have a higher 
incidence of hypertension, CAD, or low ejection fractions [32]. Patients with abnormal 
ECG-based ejection fractions also exhibit a fourfold increased risk for developing future 
ventricular dysfunction [27]. Taken together, these results emphasize the beneficial effects 
of an ECG-based system for screening DM and predicting its progression, which warrants 
further validation in large-scale community studies. 

The strength of our study is in conducting a series of experiments to apply different 
training strategies involving epidemiological perspectives and the gender/age-matching 
strategy with simulated HbA1c based on GLU to demonstrate the best performance. The 
matching strategy avoids the DLM learning spurious correlations, which maximizes 
additional notable ECG features. A previous study demonstrated the superiority of a 
matching strategy that avoids identifying discharge notes of neoplasms using negative 
terms, such as pregnancy [53]. Although matching strategies may not substantially 
increase DLM performance, they learn causality, which improves extrapolation. Gender 
and age are related to DM [54,55], and previous studies have shown correlations among 
gender, age, and ECG [32]. These relationships have led us to consider the possibility of 
confounding effects whenever these factors causally influence both ECG and HbA1c [56]. 
The gender/age-matching strategy not only provides a higher correlation, but also shows 
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a lower correlation with age and gender. To the best of our knowledge, there is no DLM 
research that considers these potential confounding effects. Future medical DLM research 
may need to further analyze the source of predictive power and try to use matching 
strategies to improve learning quality. 

Some limitations of this study should be acknowledged. First, this is a hospital-based 
retrospective study. Our data indicate the improved value of ECG-HbA1c, and we 
consider a community-based prospective study necessary to validate the effect of ECG-
HbA1c. Second, ECG characteristics may vary by race, although the diagnostic 
performance of DLM may be still stable [57]. An international study involving different 
racial and ethnic groups should still be conducted to validate the advantage of ECG-
HbA1c. Third, DM can be classified into 4 types, including type 1 diabetes, type 2 diabetes, 
gestational diabetes mellitus, and specific types of diabetes due to other causes [35]. 
Although type 2 diabetes is the most predominant type in the study, we could not provide 
the detailed type of diabetes of each patient. Finally, the “black box” of DLM necessitates 
our ECG-HbA1c being more transparent [58]. Although traditional explainable models 
reveal some clues, their performances are significantly worse than that of DLM. Further 
studies should explore the relationship between ECG morphological findings and DM 
severities. 

5. Conclusions 
In this study, we developed a novel biomarker, ECG-HbA1c, for predicting the risks 

and progression of DM and its related complications. In addition to clinical practice, our 
study creates a new avenue for using matching strategies for training DLMs, which avoids 
learning spurious correlations. Moreover, ECG is a simple, inexpensive, and noninvasive 
test that is suitable for applications in large-scale community settings. ECG-HbA1c is not 
only considered as a tool for initial DM screening, but also provides additional 
information on DM progression, even with available laboratory data. Although further 
studies are necessary, this system provides promising ECG-based indicators to promote 
health care quality in patients with DM. 
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