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Abstract—Military personnel have greater psychological stress 

and are at higher suicide attempt risk compared with the general 

population. High mental stress may cause suicide ideations which 

are crucially driving suicide attempts. However, traditional 

statistical methods could only find a moderate degree of 

correlation between psychological stress and suicide ideation in 

non-psychiatric individuals. This paper utilizes machine learning 

techniques including logistic regression, decision tree, random 

forest, gradient boosting regression tree, support vector machine 

and multilayer perceptron to predict the presence of suicide 

ideation by six important psychological stress domains of the 

military males and females. The accuracies of all the six machine 

learning methods are over 98%. Among them, the multilayer 

perceptron and support vector machine provide the best 

predictions of suicide ideation approximately to 100%. As 

compared with the BSRS-5 score ≥ 7, a conventional criterion, for 

the presence of suicide ideation ≥ 1, the proposed algorithms can 

improve the performances of accuracy, sensitivity, specificity, 

precision, the AUC of ROC curve and the AUC of PR curve up to 

5.7%, 35.9%, 4.6%, 65.2%, 4.3% and 53.2%, respectively; and 

for the presence of more severely intense suicide ideation ≥ 2, the 

improvements are 6.1%, 26.2%, 5.8%, 83.5%, 2.8% and 64.7%, 

respectively. 

 
Index Terms—Machine Learning Techniques, Psychological 

Stress, Suicide Ideation 

 
This work was supported by Ministry of Science and Technology, Taiwan, 

under grant MOST 107-2221-E-899-002-MY3.  

Gen-Min Lin is with the Department of Internal Medicine, Hualien Armed 

Forces General Hospital, Hualien 97144, Taiwan; Department of Internal 
Medicine, Tri-Service General Hospital, National Defense Medical Center, 

Taipei 11490, Taiwan; Department of Preventive Medicine, Northwestern 

University Feinberg School of Medicine, Chicago, IL 60611, USA. (email: 
farmer507@yahoo.com.tw or gen-min.lin@northwestern.edu).  

Masanori Nagamine is with the Division of Behavioral Science, National 

Defense Medical College Research Institute, Tokorozawa City, Saitama 
359-8513, Japan. (e-mail: nagaminemasanori@gmail.com). 

Szu-Nian Yang is with the Department of Psychiatry, Tri-Service General 

Hospital-Beitou Branch, National Defense Medical Center, Taipei 11490, 
Taiwan. (e-mail: ysn56725@ms4.hinet.net). 

Yueh-Ming Tai is with the Department of Psychiatry, Tri-Service General 

Hospital-Beitou Branch, National Defense Medical Center, Taipei 11490, 
Taiwan. (e-mail: Samytai@hotmail.com). 

Chin Lin is with the Graduate Institute of Life Sciences, National Defense 

Medical Center, Taipei 11490, Taiwan. (email: xup6fup0629@gmail.com). 
Hiroshi Sato is with the Artificial Intelligence Laboratory, Department of 

Computer Science, National Defense Academy, Yokosuka, Kanagawa 

239-8686, Japan. (e-mail: hsato@nda.ac.jp). 
 

 

I. INTRODUCTION 

ILITARY personnel are vulnerable to psychological stress  

because of tense physical training, multiple deployments 

and responsibilities. The prevalence of major depression was 

reported, ranging from 2.0% to 37.4% in the US military [1], 

and that of combat-related posttraumatic stress disorder (PTSD) 

was reported 2.0%-17.0% among US military war veterans [2]. 

A meta-analysis showed consistent results that the worldwide 

pooled prevalence of PTSD in rescue workers was up to 10.0% 

[3]. The symptoms of mental disorders developed frequently in 

those of continued combat exposure and those of repeated 

deployments [4]. The association between military absenteeism 

and mental health problems has been discussed in [5]. The rate 

of suicide attempt among active duty US Army personnel has 

been increasingly higher than that in the civilians [6]. 

According to an analysis for 27,501 military participants in [7], 

14.3% of survey respondents reported suicide ideation and 

3.0% committed suicide. In other words, 21% of those with 

suicide ideation had suicide attempt. As is known, previous 

studies have revealed a relationship between suicide ideation 

and psychological stress [8],[9]. To early predict the presence 

of suicide ideation and further prevent the behavior of suicide 

are essential and important in the military.  

With the technology improvement and the availability of 

various kinds of real world big data, artificial intelligence (AI) 

grows fast accordingly. The academics have made great efforts 

on the computerized algorithms to deal with big data. Machine 

learning, a combination of AI and computations, could provide 

accurate diagnosis of diseases and predict the outcomes 

[10]-[17]. For instance, the circuits for seizure classification 

and detection by machine learning are implemented in [18].  

Recognition of heart murmurs could be achieved by deep 

neural networks [19].  In addition, Ambale-Venkatesh et al. 

identified the top-20 risk factors of incident cardiovascular 

events by the random survival forest which performance was 

better than the conventional risk calculators [20]. Therefore, 

using machine learning and deep learning techniques has 

become an efficient and reliable tool for clinical practice by 

physicians globally.     

High mental stress may cause suicide ideations which are 

crucially driving suicide attempts. However, traditional 

statistical methods find merely a moderate correlation between 

psychological stress and suicide ideation. Machine learning 
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could provide better performance of the prediction of suicide 

ideations. In this paper, we utilize a large sample of the military 

members for several machine learning techniques by taking the 

psychological stress dimensions into consideration to predict 

the presence of suicide ideation.  

The schematic diagram of the proposed method in this paper 

is illustrated in Fig. 1. A binary probabilistic classifier of 

machine learning algorithm can determine whether the military 

persons, through their questionnaires, have suicide ideations. 

Machine learning provides an effective manner for early 

warning and prevention of suicide by automatic suicide 

ideation detection. 

The rest of this paper is organized as follows. The materials 

are shown in Section II. In Section III, the proposed algorithms 

by machine learning techniques are demonstrated. Section IV 

shows the experimental results. Section V concludes this paper. 

II. MATERIALS  

This study used a historical cohort of 3,546 military men and 

women aged 18-50 years, with an average of 29 years of age 

from the cardiorespiratory fitness and hospitalization events in 

armed forces (CHIEF) study performed in the Hualien Armed 

Forces General Hospital, the only one military referral hospital 

of Eastern Taiwan, in 2014. All participants carried out a 

formal health examination including a blood routine, 

biochemical tests and chest X-ray. The participants 

self-reported a questionnaire for their mental status and 

experience of substance use as well. The study design of 

CHIEF study has been described in detail previously [21]-[26]. 

 The questionnaire for the military personnel was the Brief 

Symptom Rating Scale (BSRS-5). BSRS-5 is composed of five 

psychopathological domains, i.e. anxiety, depression, hostility, 

interpersonal sensitivity and insomnia, in which each was 

measured by a five-point Likert-type scale of 0 to 4 in severity 

from 0, not at all, to 4, extremely, as shown in Table I. The 

BSRS-5 score is the sum of the five psychopathological 

domains scales. Generally, if the BSRS-5 score is lower than or 

equal to 5, the person is well adjusted. If the BSRS-5 score is 

within 6 to 9, the person has slight mental stress. Seeking 

emotional support or talking to friends or families is 

recommended. However, if the BSRS-5 score is higher than or 

equal to 10, he or she is under great mental stress.  

Psychological counseling and medical service are suggested. 

An additional questionnaire was suicide ideation, which was 

also measured by a five-point Likert-type scale of 0 to 4, as 

shown in Table I.  The average scales of the BSRS-5 score and 

the percentage for each of the five psychopathological domains 

are indicated in Table II. Two outcomes are predicted in this 

paper. One is for the presence of suicide ideation (suicide 

ideation ≥ 1), which was defined as no (n =3418, class 0) by 

Likert-type scale=0 and as any (n =128, class 1) by Likert-type 

scale ≥ 1.  Another case is for more severely intense suicide 

ideation (suicide ideation ≥ 2), which was defined as no or a 

little bit (n=3504, class 0) by Likert-type scale ≤ 1 and as more 

severely intense (n =42, class 1) by Likert-type scale ≥ 2. As 

shown in Table II, higher average BSRS-5 scores and higher 

percentages of the existence of the five psychopathological 

domains in those with suicide ideation present in both of two 

prediction cases. 

TABLE II 
STATISTICS OF THE BSRS-5 SCORE AND THE FIVE PSYCHOPATHOLOGICAL DOMAINS  

 
 

BSRS-5 Anxiety>1 Depression>1 Hostility>1 
Interpersonal 
Sensitivity >1 

Insomnia>1 

Total  (N=3546) 1.91±2.80 5.30% 5.22% 7.16% 4.23% 8.21% 

Suicide 

Ideation ≥1 

Class 0 (N=3418) 1.66±2.42 3.89% 3.77% 5.71% 3.25% 6.82% 

Class 1 (N=128) 8.71±3.59 42.97% 43.75% 46.09% 30.47% 45.31% 

Suicide 
Ideation ≥2 

Class 0 (N=3504) 1.81±2.62 4.57% 4.65% 6.65% 3.80% 7.65% 
Class 1 (N=42) 10.45±3.83 66.67% 52.38% 50.00% 40.48% 54.76% 

 

TABLE I 

FIVE-POINT LIKERT-TYPE SCALE OF FIVE PSYCHOPATHOLOGICAL DOMAINS OF THE BSRS-5 SCORE AND SUICIDE IDEATION 

 Not at all A little bit Moderately Quite a bit Extremely 

Five-point  
Likert-type Scale 

0 1 2 3 4 

 

 
Fig. 1. Schematic diagram of proposed method  
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 The matrices of the suicide ideation severity against the 

scales of the BSRS-5 score and each psychopathological 

domain are exhibited in Fig. 2. For the extreme of suicide 

ideation 4, there is no obviously higher scales in the BSRS-5 

score and each psychopathological domain.  

  

 

 

Fig. 2. Data distribution of suicide ideation vs. psychological stress 

 
Fig. 3. The flowchart of the proposed method. The input data are pre-processed by mini-max normalization and then partitioned to training and test sets for 10-fold 
cross validation. The synthetic minority over-sampling technique (SMOTE) for the minority data (those with suicide ideations) in training set is performed to 

balance the majority data of those without suicide ideations. The six proposed machine learning algorithms are individually trained by optimizing the 

corresponding hyperparameters. 
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III. PROPOSED METHODS 

The six input factors of psychological stress for machine 

learning include BSRS-5 score, anxiety, depression, hostility, 

interpersonal sensitivity and insomnia. This paper uses six 

machine learning techniques including logistic regression (LR), 

decision tree (DT), random forest (RF), gradient boosting 

decision tree (GBDT), support vector machine (SVM) and 

multilayer perceptron (MLP) for the prediction of the presence 

of suicide ideation of the military members. The system 

diagram of proposed method is illustrated in Fig. 3. 

A. Data Pre-Processing 

To solve the phenomenon of different dynamic ranges for the 

six input variables, we apply the normalization of Min-Max 

scaling [27], [28] to normalize input data into the interval 0~1. 

Min-Max normalization executes a linear transformation on the 

original data. Each of the actual data d of feature x is mapped to 

a normalized value adjusted in the range of 0 to 1 as Eq.(1). 

  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑑) = 𝑑′ =
 𝑑 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
  ,  (1) 

 

where min(x) and max(x) denote the minimum and maximum 

values of the input feature x, respectively. d′ represents the 

normalized data.    

     10-fold cross validation is utilized in this paper as shown in 

Fig. 4. The data numbers illustrated by one fold are detailed in 

Table III. For the prediction of the presence of any suicide 

ideation (suicide ideation ≥ 1), the numbers for training and test 

sets are 3191 (class 0: 3080, class 1: 111) and 355 (class 0: 338, 

class 1: 17), respectively. For the prediction of more severely 

intense suicide ideation (suicide ideation ≥ 2), the numbers for 

training and test sets are 3191 (class 0: 3157, class 1: 34) and 

355 (class 0: 347, class 1: 8), respectively. This imbalance in 

the dataset between class 0 and class 1 is obvious. This problem 

is addressed by applying the synthetic minority over-sampling 

technique (SMOTE) [29]. The training data for class 1 are 

pre-processed by SMOTE to 3080 and 3157 for the two 

predictions, respectively, as shown in Table III.  

B. Machine Learning Models 

1. Logistic regression  

   Logistic regression (LR) [30], a classification algorithm 

used to assign observations to a discrete set of classes, is 

applied in our method and illustrated in Fig. 5. Logistic 

regression (LR) is a linear model defined as Eq. (2)-(3). 

 

z = 𝑤𝑛𝑥𝑛 + 𝑤𝑛−1𝑥𝑛−1 + ⋯ + 𝑤1𝑥1 + 𝑤0 , (2) 

𝑦 = 𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =
𝑒𝑧

1 + 𝑒𝑧
=

1

1 + 𝑒−𝑧
  , (3) 

 

where 𝑥1~𝑥𝑛  denote the input variables and 𝑤0  ~ 𝑤𝑛  are the 

weights being learned. n is 6 for BSRS-5 and its five 

psychopathological domains. Logistic regression transforms its 

output 𝑦  using the logistic sigmoid function to return a 

probability value.  

The loss function consists of loss term and regularization 

term. The loss term for learning the weight vector is negative 

log-likelihood as Eq. (4)-(5). m denotes the sample size. Xi 

indicates the vector of features and Yi means the class. The 

regularization term ℓ2-norm is used in our method as Eq. (6) to 

penalize large weights in order to prevent overfitting. The 

optimized hyperparameter α is chosen in our algorithm by grid 

search. We minimize 𝐽
ℓ2

(𝑤) to find the optimal weight vector 

w by LIBLINEAR (A Library for Large Linear Classification) 

[31].  

𝐿(𝑤) = ∏ P(𝑌𝑖 = 1|𝑋𝑖 , 𝑤)𝑌𝑖(1 − P(𝑌𝑖 = 1|𝑋𝑖 , 𝑤))1−𝑌𝑖

𝑚

𝑖=1

 , 

𝑚 =  6160, 6314  𝑓𝑜𝑟  𝑆𝑢𝑖𝑐𝑖𝑑𝑒 𝐼𝑑𝑒𝑎𝑡𝑖𝑜𝑛 ≥ 1, 2 , 
 

(4) 
 

 

Fig. 4.  Data partition of 10-fold cross validation for training and test sets 
 

TABLE III 

NUMBERS OF TRAINING AND TEST DATA 

  Class 0 Class 1 Total 

Suicide 
Ideation ≥1 

Training Set 3080 111 3191 

Pre-processed by SMOTE 3080 3080 6160 

Test Set 338 17 355 

Suicide 
Ideation ≥2 

Training Set 3157 34 3191 

Pre-processed by SMOTE 3157 3157 6314 

Test Set 347 8 355 

 

 
Fig. 5. Illustration of logistic regression used in the proposed method 
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𝐽0(𝑤) = −
1

𝑚
log(𝐿(𝑤)) , (5) 

𝐽ℓ2(𝑤) = 𝐽0(𝑤) + 𝛼 ∑ 𝑤𝑖
2

𝑛

𝑖=0

 . (6) 

2. Decision tree  

Decision tree (DT) [32], which establishes classification 

models in the form of a tree structure, with CART 

(Classification and Regression Tree) [33] algorithm is used in 

our method and shown in Fig. 6.  

Each root node represents one of the six features and a split 

point on that feature. DT partitions the data (the parent node) 

into two subsets (the child nodes) by minimizing Gini(T) 

impurity shown as Eq. (7)-(8) to create decision points for 

classification task.  

 

𝐺𝑖𝑛𝑖(𝑇) = ∑
𝑁𝑖

𝑁
𝑔𝑖𝑛𝑖(𝐷𝑖)

2

𝑖=1

 , (7) 

𝑔𝑖𝑛𝑖(𝐷𝑖) = 1 − ∑ 𝑝𝑗
2

2

𝑗=1

 , (8) 

 

where T indicates one of the six features. N denotes the total 

sample number of the parent node, Ni represents the sample 

number falling on the i-th subset Di (child node) and pj indicates 

the percentage of each category j in Di after T classification. 

The two resulting subsets change into the new parent nodes, 

which are subsequently separated further into two child nodes. 

This procedure continues until all leafs are classified. The leaf 

nodes of the tree contain an output prediction (class 0 or class 1). 

A simpler tree is built by pre-pruning processing to shorten the 

branches of the tree and avoid over-fitting. The maximum tree 

depth is the hyperparameter optimized in our algorithm. 

3. Random forest  

Random forest (RF) [34], an ensemble machine learning 

technique, constructs multiple decision trees and collects them 

together for classification. The training algorithm adopted in 

our method for random forest is the bootstrap aggregating 

(bagging) technique. RF builds multiple CART models with 

different samples and different initial variables. In each 

decision tree, a random subset of the features is taken into 

consideration for splitting a node. The individual trees are not 

correlated with each other and thus the trees in random forest of 

our method are not pruned. The final prediction result is 

according to the majority-votes model from the multiple DTs. 

RF combines the merits of feature selection and bagging. The 

decision tree number is the hyperparameter to be optimized.  

4. Gradient boosting decision tree  

Gradient boosting decision tree (GBDT) [35] is also an 

ensemble machine learning method and constructs multiple 

additive decision tree models. The DTs fitting the gradient on 

pseudo residuals of previous cumulative models are repeatedly 

trained to minimize mean squared error. This sequential 

stepwise manner combines the performance of weak learners 

(i.e., DT here) in an iterative fashion into a single strong learner 

to increase the accuracy of prediction. Our algorithm uses the 

maximum tree depth as the hyperparameter to be optimized to 

avoid over-fitting.   

5. Support vector machine  

      Support vector machine (SVM) [36] with linear kernel 

(Linear SVM) is used for our proposed method. A data point is 

viewed as a 6-dimensional vector and we separate such points 

with a hyperplane. This linear SVM constructs the 

maximum-margin hyperplane so that the distance from it to the 

nearest training data point of any class (class 0 or class 1) is 

maximized.  

      If the training set is not linearly separable, soft-margin 

SVM allows the fat decision margin and some outliers are 

inside or on the wrong side of the margin. Our method adopts 

soft-margin SVM, which minimizes training error traded off 

against margin. Regularization strategy with a constraint by 

regularization term aims to fit training set data and avoid 

over-fitting.  ℓ2-norm is utilized in SVM for our method. The 

regularization hyperparameter is optimized in our algorithm to 

control overfitting. 

6. Multilayer perceptron  

Multilayer perceptron (MLP) [37] consists of an input layer, 

hidden layers and an output layer for our algorithm as 

illustrated in Fig. 7.  In fully connected MLP, each node in one 

layer connects with a certain weight to every node in the 

following layer as shown in Eq. (9)-(10).  

 

𝑣𝑖 = 𝑢𝑖𝑛𝑥𝑛 + ⋯ + 𝑢𝑖1𝑥1 + 𝑢𝑖0 , (9) 

ℎ𝑖
𝑘 = 𝑓𝑅𝑒𝑙𝑢(𝑣𝑖) , (10) 

 

where n represents the number of input or the number of the 

neuron in previous hidden layer;  v represents the weighted sum 

of the connections. hi
k denotes the output of the i-th node 

(neuron) of the k-th hidden layer. The activation function 

rectifier linear unit (Relu) is used for each node in hidden layers. 

The output layer y is determined by the logistic regression 

function.  

 
Fig. 6. Illustration of decision tree used in the proposed method 
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In the forward propagation, the signal flow moves from the 

input layer through the hidden layers to the output layer. 

Learning is carried out through backward propagation. The loss 

function consists of cross entropy and ℓ2-norm regularization 

to prevent over-fitting. The optimizer Adam is adopted in our 

method. Besides regularization hyperparameter, the numbers of 

hidden layers, neurons and iterations are also used as the 

hyperparameters to be optimized in our MLP method.  

Optimized hyperparameters for the six machine learning 

methods are shown in Table IV. The hyperparameter 

optimization is executed by grid search of F1 score as Eq. (11). 

The precision and recall (sensitivity) are defined in next 

Section.   

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2× Precision × Recall

Precision+Recall
 . (11) 

IV. EXPERIMENTAL RESULTS 

A.  Assessment Measurement  

The most appropriate test cut-off values [38] for the 

proposed six machine learning methods are determined by F1 

score as described in Eq. (11).  The performances of the applied 

models are evaluated by computing the diagnostic test 

characteristics, including accuracy, sensitivity, specificity, 

precision, F1 score, r value, the area under the receiver 

operating characteristic (ROC) curve and the area under the 

precision-recall (PR) curve [39],[40].  

The accuracy, sensitivity, specificity and precision defined 

by true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN) are denoted in Eq. (12) – (15).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 , (12) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 , (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . (15) 

 
B.  Discussion 

    The performance comparisons of each machine learning 
technique with the BSRS-5 score ≥7 [9]  assessed by accuracy, 

sensitivity, specificity, precision, F1 score, r value, are under 
curve(AUC) of ROC curve and the AUC of PR curve are shown 

 
Fig. 7. Illustration of multilayer perceptron used in the proposed method  

TABLE IV 
HYPERPARAMETER OPTIMIZATION 

Model Hyperparameter Beginning value Ending value Interval 
Optimum value 

Suicide Ideation ≥1 
Optimum value 

Suicide Ideation≥2 

Logistic Regression Regularization  0.01 15 0.01 14.99 9.01 

Decision Tree Maximum Tree Depth  2 15 1 14 6 

Random Forest Number of Trees  50 200 1 65 158 
Gradient Boosting Decision Tree Maximum Tree Depth  2 10 1 6 8 

Support Vector Machine Regularization  1 10 1 9 9 

Multilayer Perceptron Regularization  
Number of Hidden Layers  

Number of Neurons  

Number of Iterations  

0.01 
- 

- 

- 

1 
- 

- 

- 

0.01 
- 

- 

- 

0.42 
2 

6, 12 

1000 

0.08 
2 

6, 12 

1000 

The hyperparameters that are not described in this table are set to the default values used in the Scikit-learn library. 
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as the average of the 10-fold cross validation in Table V. The p 
values for all techniques are <0.0001. The accuracies for all of 
the six machine learning methods are over 98%. The results 
show that the MLP and SVM provide the best predictions. The 
second is the LR, and then the three tree-based methods. The RF 
and GBDT yield overall better results than that of the DT. The 
prediction results for suicide ideation ≥ 1 are better than those of 
suicide ideation ≥ 2.  
    The ROC curves and the PR curves and the corresponding 
AUCs are shown in Fig. 8, for one of the 10-fold cross 
validation. The areas under ROC and PR curves reach to 1 for 

MLP and SVM. The tendency is similar with the results shown 
in Table V.  The learning curves for the six proposed methods 
for suicide ideation ≥ 1 are shown in Fig. 9. The learning curves 
depict an improvement in F1 score when there are changes in the 
number of iteration (logistic regression, support vector machine 
and multilayer perceptron) or tree depth (decision tree, random 
forest, gradient boosting regression tree). All curves for the six 
proposed methods exhibit convergence well.  
     The distributions of variable importance for six input 
parameters except MLP are shown in Fig. 10. The average 
values of feature importance of the 10-fold cross validation are 

TABLE V 

PERFORMANCE COMPARISONS OF SIX MACHINE LEARNING METHODS AND PREVIOUS WORK FOR THE BSRS-5 SCORE ≥7 

  Accuracy Sensitivity Specificity Precision F1 score r ROC AUC PR AUC 

Suicide 

Ideation ≥1 

Logistic Regression 99.8% 100% 99.8% 96.3% 98.0% 81.9% 99.9% 97.9% 

Decision Tree 98.4% 77.7% 99.2% 80.7% 78.2% 71.7% 88.4% 79.6% 

Random Forest 98.7% 87.4% 99.1% 80.6% 82.8% 74.1% 97.7% 83.9% 

Gradient Boosting Decision Tree 99.0% 87.7% 99.4% 86.5% 86.6% 77.3% 98.2% 81.5% 

Support Vector Machine 100% 100% 100% 100% 100% 88.7% 100% 100% 

Multilayer Perceptron 100% 100% 100% 100% 100% 87.4% 100% 100% 

BSRS-5 Score ≥7 [9] 94.3% 64.1% 95.4% 34.8% 44.4% 42.4% 95.7% 46.8% 

Suicide 
Ideation ≥2 

Logistic Regression 99.9% 100% 99.9% 94.1% 96.7% 88.0% 99.9% 93.1% 

Decision Tree 98.9% 78.8% 99.2% 56.4% 61.2% 53.9% 90.4% 43.4% 

Random Forest 99.5% 90.8% 99.6% 71.3% 77.9% 69.2% 99.5% 71.6% 

Gradient Boosting Decision Tree 99.6% 90.8% 99.2% 80.1% 84.7% 69.2% 98.7% 81.3% 

Support Vector Machine 99.9% 100% 99.9% 96.6% 98.1% 87.1% 99.9% 93.3% 

Multilayer Perceptron 99.9% 100% 99.9% 96.7% 98.0% 90.8% 99.9% 97.9% 

BSRS-5 Score ≥7 [9] 93.8% 73.8% 94.1% 13.2% 22.1% 42.4% 97.1% 33.2% 

 

 
Fig. 8.  Receiver Operating Characteristic Curves and Precision Recall Curves 

  

   

(a) Logistic Regression (b) Decision Tree (c) Random Forest 

 

 

 

(d) Gradient Boosting Decision Tree (e) Support Vector Machine (f) Multilayer Perceptron 

Fig. 9. A set of learning curves for each of the six machine learning methods 
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listed in Table VI. All of the five machine learning techniques 
take the BSRS-5 score as the most important variable and the 
proportion is even larger for the case of suicide ideation ≥ 2. For 
both of DT and GBDT, the anxiety dimension has less 
importance compared to other three methods.  
 For the screening instrument to predict suicide ideation  
proposed in [8], the sensitivities for psychiatric group, 
community group and general medical group are 83.76%, 
21.57%, and 10.57%, respectively, and the specificities for the 
three groups are 72.17%, 99.49%, and 99.88%, respectively. As 
compared with the BSRS-5 score ≥7 in [9], a conventional 
criterion, for the presence of suicide ideation ≥ 1, the proposed 
algorithms can improve the performances of accuracy, 
sensitivity, specificity, precision, the AUC of ROC curve and 
the AUC of PR curve up to 5.7%, 35.9%, 4.6%, 65.2%, 4.3% 
and 53.2%, respectively; and for the presence of more severely 
intense suicide ideation ≥ 2, the improvements are 6.1%, 26.2%, 
5.8%, 83.5%, 2.8% and 64.7%, respectively. Instead of only 
considering the BSRS-5 score in screen of suicide ideation like 
[8] and [9], our algorithm additionally takes the five 
psychopathological domains which are related to the BSRS-5 
score, i.e., anxiety, depression, hostility, interpersonal 

sensitivity and insomnia as the input variables, and our schemes 
incorporating machine learning techniques provide better results 
than those of [8] and [9].   
     In addition, we add several critical physiological data 
including age, sex, body height, body weight, waist 
circumference, heart rate, systolic blood pressure, diastolic 
blood pressure and physical activity on the initial inputs of the 
BSRS-5 score and related five psychopathological domains in 
our proposed models. We find that the performances are only 
improved by incorporating these nine physiological data into the 
model of logistic regression. All of the performances of logistic 
regression regarding accuracy, sensitivity, specificity and 
precision reach 100% for suicide ideation ≥ 1 and 99.9% for 
suicide ideation ≥ 2. However, for the other five machine 
learning methods, the performances are not getting better with 
additional inputs of these physiological data. 
     As the incidence of suicide attempts is relatively low, a 
meta-analysis reveals that the utility of suicide ideation for 
predicting later suicide is limited by low positive predictive 
value and modest sensitivity [41]. Machine learning techniques 
for the BSRS-score and related five psychopathological 
domains can be aimed for later suicide attempts in future work.  

 
Fig. 10. Feature Importance for the machine learning methods in the proposed algorithm 
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TABLE VI 

FEATURE IMPORTANCE FOR SIX INPUT PARAMETERS OF SIX MACHINE LEARNING METHODS 

  BSRS-5 Anxiety Depression Hostility 
Interpersonal 

Sensitivity 
Insomnia 

Suicide 
Ideation ≥1 

Logistic Regression 52.15% 10.71% 8.41% 9.66% 8.83% 10.24% 
Decision Tree 77.33% 3.08% 4.88% 2.59% 5.83% 6.29% 

Random Forest 46.60% 10.19% 18.71% 8.54% 9.98% 5.98% 

Gradient Boosting Decision Tree 76.76% 3.11% 5.29% 2.25% 5.83% 6.76% 

Support Vector Machine 50.00% 10.00% 10.00% 10.00% 10.00% 10.00% 

Suicide 

Ideation ≥2 

Logistic Regression 53.89% 4.93% 10.44% 10.26% 10.89% 9.59% 

Decision Tree 88.54% 0.41% 0.67% 0.93% 8.46% 0.99% 

Random Forest 52.19% 16.36% 6.05% 7.95% 5.52% 11.93% 
Gradient Boosting Decision Tree 87.98% 0.47% 0.81% 1.11% 8.55% 1.08% 

Support Vector Machine 52.86% 4.86% 10.57% 10.57% 10.57% 10.57% 
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V. CONCLUSION 

Our study uses machine learning techniques for several 

psychological stress dimensions training on the prediction of 

suicide ideation. This paper utilizes six machine learning 

techniques to predict the presence of any or more severely 

intense suicide ideation of military personnel. Normalization of 

input data and imbalanced classification strategy facilitate the 

prediction of machine learning methods. The experimental 

results show that the techniques of MLP and SVM provide the 

best performance for the two predictions. Most of the proposed 

machine learning techniques take the BSRS-5 score to be the 

most pivotal variable and the five psychopathological 

dimensions are also adopted as the features to improve the 

screening. As compared with the prior study using the BSRS-5 

score only, the machine learning techniques can improve the 

performances of predicting suicide ideation. This work can 

substantially help to screen out the military personnel at high 

suicide risk for suicide prevention.  
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