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Angiotensin II receptor type 1 A1166C modifies the association 
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ABSTRACT

Single nucleotide polymorphisms (SNPs) in renin-angiotensin system (RAS) 
genes are associated with RAS imbalance and chronic kidney disease (CKD). We 
performed a case-control study and meta-analysis to investigate the association 
between angiotensinogen (AGT) M235T polymorphism and CKD. A total of 634 
patients with end-stage renal disease and 739 healthy controls were studied. We 
also searched PubMed and the Cochrane Library to identify prospective observational 
studies published before December 2015. We found that the TT and MT genotypes 
were associated with a higher risk of CKD than the MM genotype (odds ratio [OR]: 
3.56; 95% confidence interval [CI]: 1.14–11.16) and 2.93 (95% CI: 0.91–9.46), 
respectively). Thirty-eight study populations were included in the meta-analysis. The 
T allele was associated with a higher risk of CKD than the M allele in all populations 
(OR: 1.19; 95% CI: 1.08–1.32). The OR was 1.33 in Asians (95% CI: 1.06–1.67) 
and 1.10 in Caucasians (95% CI: 1.02–1.18). Evaluation of gene-gene and gene-
environment interactions using epistasis analysis revealed an interaction between 
AGT M235T and angiotensin II receptor type 1 A1166C in CKD (OR=0.767; 95% CI: 
0.609–0.965). Genetic testing for CKD in high-risk individuals may be an effective 
strategy for CKD prevention.

INTRODUCTION

Renal function gradually decreases in chronic 
kidney disease (CKD) patients resulting in end-stage renal 

disease (ESRD). Several studies have reported that the risk 
of cardiovascular disease mortality was 8–10 times higher 
among CKD patients compared to other populations, and 
that the risk increased with decreasing renal function [1]. 
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Risk factors for CKD include diabetes, hyperlipidemia, 
hypertension, and family history of CKD [2–4]. Diabetes, 
hyperlipidemia, and hypertension also have strong 
correlations with heritability [5–7]. Studies have shown 
that the heritability of serum creatinine was 46% [8]. Thus, 
genetic factors may have an important role in CKD.

The renin-angiotensin system (RAS) is associated 
with CKD. If the RAS is overactive, it promotes arterial 
constriction resulting in an increase in blood pressure and 
decrease in renal function [9]. The end-product of RAS 
activity, angiotensin II (Ang II), regulates the synthesis of 
multiple inflammatory factors associated with CKD such 
as TNF-alpha, IL-6, MCP-1, and NF-κB [10]. Therefore, 
single nucleotide polymorphisms (SNPs) in RAS genes 
may be associated with CKD. Angiotensinogen (AGT) 
is a component of the RAS. The AGT gene is located on 
chromosome 1 (1q42-43) [11]. It has an overall length 
of 13 kb and spans five exons and four introns [12]. 
Excess ATG results in an increase in angiotensin I (Ang I) 
synthesis, but the total amount of renin remains constant 
[13]. Ang I is converted into Ang II, which can cause 
kidney damage. Previous studies have investigated the 
association between AGT SNPs and CKD. The C803T 
polymorphism (rs699) has been frequently reported in 
previous studies. It is located at amino acid 235 in exon 
2 and has two possible alleles (M and T). This variant is 
commonly referred to as M235T [14]. Functional analysis 
has indicated that individuals with the T allele have higher 
serum angiotensin concentrations compared to those with 
the M allele [15]. A meta-analysis verified that individuals 
with the T allele had a higher risk of hypertension [14] and 
heart disease [16] compared to those with the M allele. 
Thus, this locus may be associated with CKD.

Previous meta-analyses have investigated 
the association between AGT M235T and diabetic 
nephropathy [14, 17], IgA neuropathy [18], and ESRD 
[19]. However, these meta-analyses only included data 
for 9,000 patients. The association between this locus and 
CKD differed between Caucasian and Asian populations 
[17–19]. We performed a large-scale case-control study 
and meta-analysis to investigate the association between 
AGT M235T and CKD.

RESULTS

Case-control study

The basic demographics and blood biochemical tests 
for the study population are shown in Table 1. The mean 
age was 64.5 ± 14.9 and 72.7 ± 7.2 years in the case and 
control groups, respectively. There were 296 men (46.7%) 
in the case group and 298 (40.2%) in the control group. 
The mean BMIs were 22.4 ± 4.0 and 24.1 ± 3.2 kg/m2 in 
the case and control groups, respectively. The prevalence 
of hypertension was 57.8% and 40.8%, and the prevalence 
of diabetes was 54.2% and 12.3% in the case and control 

groups, respectively. The mean total cholesterol level 
was 166.0 ± 36.1 and 191.0 ± 32.5 mg/dL, the mean 
triglyceride level was 158.5 ± 109.7 and 116.1 ± 60.2 
mg/dL and the mean serum creatinine level was 9.6 ± 
2.5 and 0.8 ± 0.2 mg/dL in the case and control groups, 
respectively. Additionally, the mean glomerular filtration 
rate was 5.5 ± 1.9 mL and 90.5 ± 15.7 mL/min/1.73 m2 in 
the case and control groups, respectively. There were 122 
(21.1%) smokers or ex-smokers in the case group and 76 
(10.3%) in the control group.

We calculated the association between the AGT 
M235T polymorphism and the risk of CKD under 
genotype, allele frequency, dominant, and recessive 
models (Table 2). Using the M allele as the reference, 
the OR for the T allele was 1.27 (95% CI: 1.05–1.55; p = 
0.016). The OR was 1.41 after controlling for age, gender, 
BMI, smoking, hypertension, and diabetes (95% CI: 1.02–
1.95; p = 0.035). Similar results were observed with the 
other genetic models.

Meta-analysis

The literature review process is shown in Figure 1. 
We identified 120 publications from PubMed and five from 
the Cochrane Library (four were also found in PubMed). 
An additional 13 publications were identified through 
a search of the reference lists of four published meta-
analyses [14, 17–19]. The keywords used in the search and 
screening processes are shown in Supplementary Table 2. 
A total of 34 publications were included in our analysis 
[20–53]. Detailed information for each publication is 
shown in Supplementary Table 3.

The results of the meta-analysis under an allele 
model are shown in Figure 2. We found that the risk 
ratio of the T allele to the M allele was 1.19 (95% CI: 
1.08–1.32). The OR of individuals with the T allele was 
1.33 (95% CI: 1.06–1.67) in Asians and 1.10 (95% CI: 
1.02–1.18) in Caucasians. The estimated I2 was 74.7% for 
the entire study population, 84.6% for Asians, and 31.2% 
for Caucasians. Consolidated results for the other genetic 
models are shown in Table 3. The results were similar 
between these models (i.e., the risk of CKD increased 
with the number of T alleles). These results were observed 
in all populations investigated. However, the Caucasian 
population did not show significance under a dominant 
model [OR: 1.08; 95% CI: (0.98–1.18)]. The consolidated 
results for all studies using the recessive model were 
asymmetric (Egger’s test p = 0.015). Asymmetry could 
be due to ethnic heterogeneity [54]. We found sufficient 
symmetry in the analysis of both the Asian and Caucasian 
subgroups (Egger’s test p = 0.064 in Asians; Egger’s test 
p = 0.251 in Caucasians). Therefore, the asymmetry was 
likely due to ethnic heterogeneity.

Our data indicated that AGT M235T was 
associated with CKD. However, we observed high 
study heterogeneity. Therefore, we investigated whether 
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Table 2: The association between AGT M235T and CKD

  Case Control Crude OR 
(95% CI) p-value Adj-ORa 

(95% CI) p-value Adj-ORb 
(95% CI) p-value

Genotype       0.013   0.014   0.066

MM 13 (2.1%) 37 (5.0%) 1   1   1  

MT 168 (26.5%) 205 (27.7%) 2.33 
(1.20–4.53) 0.012 2.59 

(1.27–5.27) 0.009 2.93 
(0.91–9.46) 0.073

TT 453 (71.5%) 497 (67.3%) 2.59 
(1.36–4.94) 0.012 2.79 

(1.40–5.56) 0.004 3.56 (1.14–
11.16) 0.029

Alleles       0.016   0.027   0.035

M-allele 194 (15.3%) 279 (18.9%) 1   1   1  

T-allele 1074 (84.7%) 1199 (81.1%) 1.27 
(1.05–1.55)   1.27 

(1.03–1.57)   1.41 
(1.02–1.95)  

Dominant 
model       0.093   0.156   0.106

MM 13 (2.1%) 37 (5.0%) 1   1   1  

MT+TT 621 (98.0%) 702 (95.0%) 1.22 
(0.97–1.54)   1.20 

(0.93–1.54)   1.36 
(0.94–1.97)  

Recessive 
model       0.005   0.004   0.036

MM+MT 181 (28.5%) 242 (32.7%) 1   1   1  

TT 453 (71.5%) 497 (67.3%) 2.52 
(1.33–4.78)   3.01 

(1.49–6.10)   3.39 (1.09–
10.58)  

a: Adjustment for age and sex.
b: Adjustment for age, sex, BMI, hypertension, diabetes, and smoking status.

Table 1: Characteristics of ESRD and control subjects

  Case (N = 634) Control (N = 739) p-value

Age (years) 64.5 ± 14.9 72.7 ± 7.2 < 0.001

Sex (male) 296 (46.7%) 298 (40.2%) 0.015

BMI (kg/m2) 22.4 ± 4.0 24.1 ± 3.2 < 0.001

Hypertension 332 (57.8%) 303 (40.8%) < 0.001

Diabetes mellitus 213 (54.2%) 91 (12.3%) < 0.001

TC (mg/dL) 166.0 ± 36.1 191.0 ± 32.5 < 0.001

TG (mg/dL) 158.5 ± 109.7 116.1 ± 60.2 < 0.001

Creatinine (mg/dL) 9.6 ± 2.5 0.8 ± 0.2 < 0.001

eGFR (mL/min/1.73m2) 5.5 ± 1.9 90.5 ± 15.7 < 0.001

 Smoking 122 (21.1%) 76 (10.3%) < 0.001

TC: Total cholesterol; TG: Triglycerides; eGFR: Estimated glomerular filtration rate.
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variables such as race, study design, quality score, kidney 
function in cases, gender, age, BMI, hypertension, or 
diabetes mellitus could explain the heterogeneity (Table 
4). We used summary information for the case group 
to analyze gene-environment interactions [55, 56]. 
However, our data suggested that none of these variables 
could explain the heterogeneity. Thus, these common 
environmental factors may not show gene-environment 
interactions with AGT M235T.

Epistasis test in meta-analysis

We next used Epistasis Test in Meta-Analysis 
(ETMA) to analyze gene-gene interactions [57]. We found 
that the angiotensin II receptor type 1 (AGTR1) A1166C 
polymorphism was frequently reported along with the 
AGT M235T polymorphism. Of the 34 included studies, 
18 provided information on AGTR1 A1166C [21, 23, 25-
27, 31-35, 37-40, 43, 44, 49, 50]. The results of the ETMA 

are shown in Table 5. We found that the T allele of AGT 
M235T [OR: 1.274; 95% CI: (1.174–1.383)] and the C 
allele of AGTR1 A1166C [OR: 1.296; 95% CI: (1.138–
1.476)] were associated with an increased risk of CKD. 
However, they had a protective effect [OR: 0.767; 95% 
CI: (0.609–0.965)].

DISCUSSION

We demonstrated a correlation between AGT 
M235T and CKD. Individuals with the T allele had a 
higher risk of CKD than those with the M allele. However, 
we detected high study heterogeneity which confounded 
the results. Meta-regression analysis indicated that known 
environmental factors did not modify the correlation 
between AGT M235T and CKD. However, gene-gene 
interactions between AGTR1 A1166C and AGT M235T 
could explain the study heterogeneity. Individuals 

Figure 1: Flow diagram showing the study identification process.
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Table 3: ORs for the association between AGT M235T and CKD under allele type, genotype, dominant, and 
recessive models

Model 
 Total    Asian    Caucasian  

OR 95% CI I2 Egger’s 
test OR 95% CI I2 Egger’s 

test OR 95% CI I2 Egger’s 
test

Allele 
(T vs. M) 1.19 1.08–1.32 74.7% 0.092 1.33 1.06–1.67 84.6% 0.085 1.10 1.02–1.18 31.2% 0.960

Dominant 
(TT + MT 
vs. MM)

1.22 1.06–1.40 58.6% 0.129 1.69 1.14–2.49 71.8% 0.061 1.08 0.98–1.18 0.0%, 0.687

Recessive 
(TT vs. MM 
+ MT)

1.32 1.13–1.53 70.0% 0.015 1.42 1.06–1.89 81.7% 0.064 1.23 1.06–1.42 43.9% 0.251

Egger’s test: p value of Egger’s regression for asymmetry assessment.

Figure 2: Forest plot of the meta-analysis results demonstrating an association between AGT M235T and CKD under 
an allele model (reference allele: M).
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with the T allele of AGT M235T had higher serum 
AGT concentrations than those with the M Allele [15]. 
Excessive ATG can lead to an increase in the concentration 
of Ang I [13], which is converted into Ang II and can 
cause kidney damage [10]. Our results are consistent with 
previous studies that demonstrated an association between 
RAS and hypertension [14] and heart disease [16].

Several previous meta-analyses have demonstrated 
a correlation between AGT M235T and CKD [14, 17–19]. 
However, high study heterogeneity may have impacted 
the results. We demonstrated gene-gene interactions 
between AGTR1 A1166C and AGT M235T. Previous 
studies have found that AGTR1 A1166C may be located 
in the binding site for microRNA-155 (miR-155), and 
that the A allele enhances miR-155 binding affinity 
compared to the C allele resulting in decreased AGTR1 
protein expression [58]. Low AGTR1 expression affects 
Ang II signaling, resulting in decreased synthesis of 
inflammatory factors such as TNF-alpha, IL-6, MCP-1, 
and NF-κB [10]. Individuals with the C allele had a higher 
risk of CKD (OR: 1.296; 95% CI: 1.138–1.476). Similar 
results were observed in previous studies that investigated 
the association between AGTR1 A1166C and CKD [59, 
60]. Thus, gene-gene interactions exist between AGTR1 
A1166C and AGT M235T.

The association between AGT M235T and CKD 
differed by population. Previous meta-analyses reported 
a stronger correlation in Asians [14, 17–19]. These results 
may be explained by the AGTR1 A1166C polymorphism. 
The 1000 Genomes project reported that the frequency of 
the C allele was lower in Asians compared to Caucasians 
[61]. Because the interaction between AGTR1 A1166C 
and AGT M235T is antagonistic, we would expect an 
increased risk among Asians compared to Caucasians. 
Therefore, gene-gene interactions between AGTR1 
A1166C and AGT M235T could explain the findings of 
previous epidemiological studies.

Our study had several limitations. First, we used 
summary data for the meta-analysis rather than individual 
patient data. However, previous studies have shown 
that the inclusion of summary data could increase the 
sample size and improve the level of evidence [62]. We 
also performed a case-control study. These results were 
similar to those of the meta-analysis. Second, we only 
analysed a few common factors in our gene-environment 
analysis due to limitations in data availability. Therefore, 
there may be interactions between AGT M235T and 
other environmental factors that were not included in our 
analysis.

Table 4: Effects of moderators on the association between AGT M235T and CKD under an allele model (T vs. M)

  N τ2 Adjust τ2 OR 95% CI p-value* Egger’s test p-value

Race 39 0.07443 0.0671 0.832 0.678–1.020 0.0768 0.8492

Study design 39 0.07443 0.07496 0.921 0.731–1.159 0.4817 0.5398

Quality score (per 1 score) 39 0.07443 0.07745 0.961 0.868–1.064 0.4429 0.4812

Kidney function (cases) 39 0.07443 0.07892 0.935 0.727–1.203 0.6015 0.5325

Male gender (per 100%) 36 0.07609 0.07786 0.957 0.509–1.799 0.8915 0.6314

Mean age (per 10 years) 38 0.07606 0.07585 1.074 0.970–1.190 0.1703 0.2877

BMI (per 5 kg/m2) 18 0.06223 0.05905 0.830 0.625–1.103 0.1989 0.3689

Hypertension (per 100%) 30 0.05367 0.05148 1.791 0.988–3.248 0.0548 0.3524

Diabetes mellitus (per 100%) 28 0.09401 0.1024 1.028 0.680–1.553 0.8973 0.6313

Dependent variable: log OR of AGT M235T and CKD using allele model.
N: number of studies.
Race: Asian is reference; Study design: cross-sectional study is reference.
*: Significance level is p = 0.05/10 (Bonferroni correction).

Table 5: ETMA of the interaction between AGT M235T and AGTR1 A1166C in CKD

  OR (95% CI) p-value

AGT M235T (T allele vs. M allele) 1.274 (1.174–1.383) < 0.001

AGTR1 A1166C (C allele vs. A allele) 1.296 (1.138–1.476) 0.001

AGT M235T × AGTR1 A1166C 
(interaction term) 0.767 (0.609–0.965) 0.026
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We relied on tabular data rather than on individual 
patient data in our gene-gene interaction analysis, possibly 
leading to an inflated standard error in pooled analyses. 
However, we still observed a significant gene-gene 
interaction between AGT M235T and AGTR1 A1166C in 
ETMA.

We have demonstrated a correlation between AGT 
M235T and CKD, which could be modified by AGTR1 
A1166C. These data may explain why Asians with the 
T allele of AGT M235T have a higher risk of CKD. We 
recommend that patients who are at high-risk for CKD 
undergo genetic testing.

MATERIALS AND METHODS

Case-control study

Sample size calculations and study approval

The minimum required sample size was 1,041 
subjects. We calculated the size using the following 
parameters: a two-sided test with a power (1 − β) = 0.8 at 
a significance level of 0.05, ratio of controls to cases = 1, 
hypothetical proportion of controls with exposure = 87% 
and least extreme odds ratio (OR) = 1.5 [63].

We initiated a population-based study at Tri-Service 
General Hospital (TSGH), a medical teaching hospital of 
the National Defence Medical Centre in Taipei, Taiwan. 
The study was approved by the Institutional Ethical 
Committee of Tri-Service General Hospital (TSGH-1-
104-05-006). All subjects enrolled in the study provided 
written informed consent.
Subjects

Subjects in the case group were recruited from 
dialysis centers in TSGH and Cardinal Tien Hospital. All 
cases were undergoing dialysis and were diagnosed with 
ESRD. Control subjects who participated in a check-up 
program from March 2011 were recruited from the Health 
Management Centre of TSGH. The inclusion criteria for 
controls were the following: (1) estimated glomerular 
filtration rate (eGFR) calculated using the MDRD 
equation of > 60 mL/min/1.73m2, (2) no symptoms of 
kidney damage such as proteinuria and haematuria, (3) 
no other diseases such as cancer, and (4) blood sample 
available for genotyping. Demographic data included 
age, sex, body mass index (BMI: kg/m2), history of 
hypertension, history of diabetes mellitus, and smoking 
habits, and were obtained from electronic medical 
records. Laboratory values including total cholesterol, 
triglycerides, and creatinine levels, were also collected 
from medical records. The exclusion criteria for patients 
were as follows: 1) eGFR of more than 15 mL/min per 
square meter, 2) diagnosed with cancer. A total of 634 
cases (296 men and 338 women) and 739 controls (298 
men and 441 women) were included in the study who 
were treated before July 2015.

Genomic DNA extraction and genotyping

Genomic DNA was extracted from peripheral 
blood samples using standard procedures for proteinase 
K (Invitrogen, Carlsbad, CA, USA) digestion and phenol/
chloroform extraction. Subjects were genotyped using 
the iPLEX Gold SNP assay to identify AGT M235T 
polymorphisms [64]. At least 10% of the samples were 
randomly selected for repeat genotyping to validate the 
results.
Statistical analysis

Continuous variables were evaluated using Student’s 
t tests and reported as the mean ± standard deviation 
(SD). Genotypes and allelic frequencies were compared 
between cases and controls using χ2 test or Fisher’s 
exact tests. Logistic regression was used to estimate ORs 
and 95% confidence intervals (CIs) as a measure of the 
association with CKD susceptibility. The analysis was 
performed using allele type, co-dominant, dominant, and 
recessive models. A p < 0.05 was considered significant. 
Statistical analyses were performed using the R software, 
version 3.3.1 (R Project for Statistical Computing, Vienna, 
Austria).

Meta-analysis

Search methods and criteria for study consideration

The PRISMA checklist and Meta-analysis on 
Genetic Association Studies Checklist is described in 
Supplementary Table 1 [65]. We compared the risk of 
CKD between individuals carrying the major (M) and 
minor (T) alleles of AGT M235T. Relevant studies were 
identified through a search of PubMed and the Cochrane 
Library using keywords and medical subject headings 
that included all spellings of AGT M235T and CKD. The 
search strategy and records are shown in Supplementary 
Table 2. We also manually scanned the reference lists of 
identified trials and review articles to identify additional 
candidate studies. All articles published prior to December 
2015 were eligible for inclusion.

All studies that assessed the association between 
AGT M235T polymorphisms and CKD risk were 
considered for inclusion in our analysis. The inclusion 
criteria were as follows: (1) cross-sectional survey or 
case-control study, (2) study population age > 18 years, 
(3) CKD defined according to the National Kidney 
Foundation: kidney damage by clinical diagnosis or 
a glomerular filtration rate < 60 mL/min/1.73 m2, (4) 
included at least one control group with normal kidney 
function, and (5) genotyping data available. Studies 
that investigated the relationships between genetic 
polymorphisms and other kidney diseases (e.g. lupus 
nephritis, polycystic kidney disease, endemic nephropathy, 
or reflux nephropathy) were excluded from the analysis. If 
published data was incomplete, we contacted the authors 
for further information.
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Data extraction and quality assessment

We recorded the name of the first author, year 
of publication, ethnicity of the study population, 
kidney function of cases, case group definitions and 
characteristics (e.g. mean age, proportion of male subjects, 
BMI, prevalence of diabetes mellitus, prevalence of 
hypertension, proportion of smokers, and the AGT M235T 
genotype distribution). Diabetes mellitus and hypertension 
were defined by a fasting plasma glucose level of > 126 
mg/dL and systolic blood pressure of > 140 mmHg. If the 
article did not report the prevalence of diabetes mellitus 
and hypertension or the definitions did not match, we 
assumed a normal distribution of plasma glucose level and 
systolic blood pressure.

Risk of bias was assessed using the Newcastle-
Ottawa Quality Assessment Scale [66]. The following 
factors are considered: (1) study population selection, (2) 
comparability between the case and control groups, and 
(3) the exposure. Each study received a score between 
0 and 9. We investigated the relationship between study 
quality and the estimation of risk.

Statistical analysis

The characteristics of the individual study 
populations are presented as means or proportions where 
appropriate. We evaluated the association between AGT 
M235T polymorphisms and CKD risk in each study using 
ORs and 95% CIs. Heterogeneity was assessed using the 
τ2 statistic, which was estimated using the DerSimonian-
Laird method, and a random-effects model was used to 
calculate the weighted effect size. Associations between 
AGT polymorphisms and CKD risk were calculated using 
an allele type, genotype, dominant, and recessive model.

Egger’s regression and funnel plots were used to 
evaluate the symmetry of the pooled results. The I2 was 
calculated with Cochrane Q tests and used to quantify 
study heterogeneity. An I2 > 50% was indicative of 
moderate-to-high heterogeneity.

A meta-regression analysis of average summary 
values was used to explore the source of heterogeneity. 
According to our previous studies, the average summary 
value of a case group can be used to build a model and can 
facilitate interaction effect estimation [29]. An interaction 
effect is determined using the OR and defined as the ratio 
between ORs per 1 unit. Possible moderators (race, study 
design, quality score, kidney function of case, sex, age, 
BMI, hypertension, diabetes mellitus and smoking) were 
tested to explore heterogeneity.

For further explain the unexplained heterogeneity 
between included studies, we considered explore gene-
gene interaction in our meta-analysis. Although meta-
regression is a common approach to assessing interaction 
effects in meta-analysis, but it is not suitable for analyzing 
gene-gene interaction. The most important problem 
is attenuation bias, and these random errors will lead 

to inconsistent estimates of interaction effects but this 
phenomenon does not occur in individual data analysis 
[57]. ETMA (Epistasis Test in Meta-Analysis) is a Markov 
Chain Monte Carlo based method for consistency the 
estimate. We used the “etma” package of R software to 
implement this analysis.

This study considered a p value of <0.05 to be 
significant. However, because of multiple comparison 
correction, a p < 0.05 was considered significant. 
Statistical analyses were conducted using the ‘metafor’ 
and ‘meta’ packages for the R software, version 3.3.1.
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